Michael E Douglas, Michael Edward Dou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2236757/publications.pdf

Version: 2024-02-01

90 papers

3,527 citations

236925 25 h-index 56 g-index

109 all docs

109 docs citations 109 times ranked 4153 citing authors

#	Article	IF	CITATIONS
1	Limited gene flow and pronounced population genetic structure of Eastern Massasauga (Sistrurus) Tj ETQq $1\ 1\ 0$.	784314 rgl 2.5	BT /Overlock
2	Are populations of economically important bonefish and queen conch 'open' or 'closed' in the northern caribbean basin?. Marine Ecology, 2021, 42, e12639.	1.1	6
3	The choices we make and the impacts they have: Machine learning and species delimitation in North American box turtles (<i>Terrapene</i>). Molecular Ecology Resources, 2021, 21, 2801-2817.	4.8	8
4	Spatial population genetics in heavily managed species: Separating patterns of historical translocation from contemporary gene flow in whiteâ€tailed deer. Evolutionary Applications, 2021, 14, 1673-1689.	3.1	14
5	Trait heritability and its implications for the management of an invasive vertebrate. Biological Invasions, 2021, 23, 3447-3456.	2.4	2
6	Taxonomic Uncertainty and the Anomaly Zone: Phylogenomics Disentangle a Rapid Radiation to Resolve Contentious Species (<i>Gila robusta</i> Complex) in the Colorado River. Genome Biology and Evolution, 2021, 13, .	2.5	9
7	Female persistence during toxicant treatment predicts survival probability of offspring in invasive brown treesnakes (Boiga irregularis). Global Ecology and Conservation, 2021, 31, e01827.	2.1	1
8	ClineHelpR: an R package for genomic cline outlier detection and visualization. BMC Bioinformatics, 2021, 22, 501.	2.6	2
9	Parallel introgression, not recurrent emergence, explains apparent elevational ecotypes of polyploid Himalayan snowtrout. Royal Society Open Science, 2021, 8, 210727.	2.4	3
10	Population connectivity in voles (Microtus sp.) as a gauge for tall grass prairie restoration in midwestern North America. PLoS ONE, 2021, 16, e0260344.	2.5	1
11	Comp-D: a program for comprehensive computation of D-statistics and population summaries of reticulated evolution. Conservation Genetics Resources, 2020, 12, 263-267.	0.8	11
12	AdmixPipe: population analyses in Admixture for non-model organisms. BMC Bioinformatics, 2020, 21, 337.	2.6	22
13	Gene flow and species delimitation in fishes of Western North America: Flannelmouth (<i>Catostomus) Tj ETQq1 6477-6493.</i>	1 0.78431 1.9	4 rgBT /Ove 12
14	Age structuring and spatial heterogeneity in prion protein gene (<i>PRNP</i>) polymorphism in white-tailed deer. Prion, 2020, 14, 238-248.	1.8	12
15	Contrasting signatures of introgression in North American box turtle (<i>Terrapene</i> spp.) contact zones. Molecular Ecology, 2020, 29, 4186-4202.	3.9	19
16	Defining relictual biodiversity: Conservation units in speckled dace (Leuciscidae: <i>Rhinichthys) Tj ETQq0 0 0 rgE</i>	3T /Qverlocl	R ₁₅ 0 Tf 50 1
17	Reticulate evolution as a management challenge: Patterns of admixture with phylogenetic distance in endemic fishes of western North America. Evolutionary Applications, 2020, 13, 1400-1419.	3.1	13
18	Multi-targeted management of upland game birds at the agroecosystem interface in midwestern North America. PLoS ONE, 2020, 15, e0230735.	2.5	9

#	Article	IF	Citations
19	Hybridization drives genetic erosion in sympatric desert fishes of western North America. Heredity, 2019, 123, 759-773.	2.6	34
20	BA3‧NPs: Contemporary migration reconfigured in BayesAss for nextâ€generation sequence data. Methods in Ecology and Evolution, 2019, 10, 1808-1813.	5.2	91
21	Genomic pedigree reconstruction identifies predictors of mating and reproductive success in an invasive vertebrate. Ecology and Evolution, 2019, 9, 11863-11877.	1.9	11
22	FRAGMATIC: in silico locus prediction and its utility in optimizing ddRADseq projects. Conservation Genetics Resources, 2018, 10, 325-328.	0.8	22
23	MrBait: universal identification and design of targeted-enrichment capture probes. Bioinformatics, 2018, 34, 4293-4296.	4.1	17
24	Temporal Patterns of Genetic Diversity in an Imperiled Population of the Eastern Massasauga Rattlesnake (<i>Sistrurus catenatus</i>). Copeia, 2018, 106, 414-420.	1.3	4
25	Unraveling historical introgression and resolving phylogenetic discord within Catostomus (Osteichthys: Catostomidae). BMC Evolutionary Biology, 2018, 18, 86.	3.2	24
26	Genetic rescue, the greater prairie chicken and the problem of conservation reliance in the Anthropocene. Royal Society Open Science, 2017, 4, 160736.	2.4	31
27	Anthropogenic Impacts Facilitate Native Fish Hybridization in the Bonneville Basin of Western North America. Transactions of the American Fisheries Society, 2017, 146, 16-21.	1.4	11
28	Do biofilm communities respond to the chemical signatures of fracking? A test involving streams in North-central Arkansas. BMC Microbiology, 2017, 17, 29.	3.3	19
29	Deconstructing a Species-Complex: Geometric Morphometric and Molecular Analyses Define Species in the Western Rattlesnake (Crotalus viridis). PLoS ONE, 2016, 11, e0146166.	2.5	25
30	Population Genetics of the Copperhead at Its Most Northeastern Distribution. Copeia, 2016, 104, 448-457.	1.3	7
31	Salinity and hydrological barriers have little influence on genetic structure of the mosquitofish in a coastal landscape shaped by climate change. Hydrobiologia, 2016, 777, 209-223.	2.0	5
32	Invasion Ecology: An International Perspective Centered in the Holarctic. Fisheries, 2015, 40, 464-470.	0.8	3
33	Bateman-Trivers in the 21st Century: sexual selection in a North American pitviper. Biological Journal of the Linnean Society, 2015, 114, 436-445.	1.6	16
34	Nowhere to Go but Up: Impacts of Climate Change on Demographics of a Short-Range Endemic (Crotalus willardi obscurus) in the Sky-Islands of Southwestern North America. PLoS ONE, 2015, 10, e0131067.	2.5	27
35	Genetic assessment of environmental features that influence deer dispersal: implications for prionâ€infected populations. Population Ecology, 2014, 56, 327-340.	1.2	35
36	Conservation and Management of Polytypic Species: The Little Striped Whiptail Complex (<i>Aspidoscelis inornata</i>) as a Case Study. Copeia, 2014, 2014, 519-529.	1.3	13

#	Article	IF	CITATIONS
37	Morphological Diagnosability of <i>Aspidoscelis arizonae </i> (Squamata: Teiidae) as an Indication of Evolutionary Divergence in the <i>Aspidoscelis inornata </i> Complex. Copeia, 2013, 2013, 366-377.	1.3	8
38	Stream hierarchy defines riverscape genetics of a <scp>N</scp> orth <scp>A</scp> merican desert fish. Molecular Ecology, 2013, 22, 956-971.	3.9	43
39	Microsatellite markers for Longfin Dace, Agosia chrysogaster, a sentinel fish species in imperiled arid-land rivers of the Sonoran Desert. Conservation Genetics Resources, 2012, 4, 927-929.	0.8	1
40	Crossroad Blues: An Intersection of Rivers, Wetlands, and Public Policy. Fisheries, 2011, 36, 337-339.	0.8	1
41	Conservation phylogenetics of helodermatid lizards using multiple molecular markers and a supertree approach. Molecular Phylogenetics and Evolution, 2010, 55, 153-167.	2.7	33
42	Climate change and evolution of the New World pitviper genus <i>Agkistrodon</i> (Viperidae). Journal of Biogeography, 2009, 36, 1164-1180.	3.0	24
43	Conservation Genetics of the Desert Massasauga Rattlesnake (Sistrurus catenatus edwardsii). Copeia, 2009, 2009, 740-747.	1.3	14
44	The Type Localities of Sistrurus catenatus and Crotalus viridis (Serpentes: Viperidae), with the Unraveling of a Most Unfortunate Tangle of Names. Copeia, 2008, 2008, 421-424.	1.3	5
45	Genealogical Concordance between Mitochondrial and Nuclear DNAs Supports Species Recognition of the Panamint Rattlesnake (Crotalus mitchellii stephensi). Copeia, 2007, 2007, 920-932.	1.3	17
46	Geographic isolation, genetic divergence, and ecological non-exchangeability define ESUs in a threatened sky-island rattlesnake. Biological Conservation, 2007, 134, 142-154.	4.1	58
47	Molecular Ecology of the Big Brown Bat (Eptesicus fuscus): Genetic and Natural History Variation in a Hybrid Zone. Journal of Mammalogy, 2007, 88, 1230-1238.	1.3	26
48	Evolution of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change. Molecular Ecology, 2006, 15, 3353-3374.	3.9	119
49	The Human Dimensions of Biotic Homogenization. Conservation Biology, 2005, 19, 2036-2038.	4.7	48
50	Evolutionary Homoplasy among Species Flocks of Central Alpine Coregonus (Teleostei:) Tj ETQq0 0 0 rgBT /Over	lock 10 Tf	50,222 Td (S
51	Small Fish in a Large Landscape: Diversification of Rhinichthys osculus (Cyprinidae) in Western North America. Copeia, 2004, 2004, 207-221.	1.3	29
52	Ecological and evolutionary consequences of biotic homogenization. Trends in Ecology and Evolution, 2004, 19, 18-24.	8.7	1,159
53	Drought in an evolutionary context: molecular variability in Flannelmouth Sucker (Catostomus) Tj ETQq1 1 0.784	4314 rgBT 2.4	/Overlock 10 30
54	Ecology of the Grand Canyon Rattlesnake (Crotalus viridis abyssus) in the Little Colorado River Canyon, Arizona. Southwestern Naturalist, 2002, 47, 30.	0.1	21

#	Article	IF	Citations
55	Systematic Status of Bonefishes (Albula spp.) From the Eastern Pacific Ocean Inferred from Analyses of Allozymes and Mitochondrial DNA. Environmental Biology of Fishes, 2002, 63, 151-159.	1.0	11
56	Use of Geometric Morphometrics to DifferentiateGila(Cyprinidae) within the Upper Colorado River Basin. Copeia, 2001, 2001, 389-400.	1.3	26
57	Montane Rattlesnakes and Prescribed Fire. Southwestern Naturalist, 2001, 46, 54.	0.1	26
58	Spatiotemporal Variation in Length–Weight Relationships of Endangered Humpback Chub: Implications for Conservation and Management. Transactions of the American Fisheries Society, 2000, 129, 419-428.	1.4	30
59	Late Season Reproduction by Big-River Catostomidae in Grand Canyon (Arizona). Copeia, 2000, 2000, 238-244.	1.3	17
60	Did Vicariance Mold Phenotypes of Western North American Fishes? Evidence from Gila River Cyprinids. Evolution; International Journal of Organic Evolution, 1999, 53, 238.	2.3	8
61	DID VICARIANCE MOLD PHENOTYPES OF WESTERN NORTH AMERICAN FISHES? EVIDENCE FROM GILA RIVER CYPRINIDS. Evolution; International Journal of Organic Evolution, 1999, 53, 238-246.	2.3	18
62	Population and Survival Estimates of Catostomus latipinnis in Northern Grand Canyon, with Distribution and Abundance of Hybrids with Xyrauchen texanus. Copeia, 1998, 1998, 915.	1.3	20
63	Multivariate Discrimination of Colorado PlateauGilaspp.: The "Art of Seeing Well―Revisited. Transactions of the American Fisheries Society, 1998, 127, 163-173.	1.4	14
64	Disciminating Gila Robusta and Gila Cypha: Risk Assessment and the Endangered Species Act. , 1997, 7, 958.		1
65	Predation by Introduced Fishes on Endangered Humpback Chub and other Native Species in the Little Colorado River, Arizona. Transactions of the American Fisheries Society, 1997, 126, 343-346.	1.4	75
66	DISCRIMINATINGGILA ROBUSTAANDGILA CYPHA: RISK ASSESSMENT AND THE ENDANGERED SPECIES ACT. , 1997, 7, 958-967.		2
67	Population Estimates/Population Movements of Gila cypha, an Endangered Cyprinid Fish in the Grand Canyon Region of Arizona. Copeia, 1996, 1996, 15.	1.3	50
68	Molecular Evidence for a Unique Evolutionary Lineage of Endangered Sonoran Desert Fish (Genus) Tj ETQq0 0 0 0	rgBT/Over	logk 10 Tf 50
69	Patterns of Morphological Variation among Endangered Populations of Gila robusta and Gila cypha (Teleostei: Cyprinidae) in the Upper Colorado River Basin. Copeia, 1995, 1995, 636.	1.3	21
70	Indigenous Fishes of Western North America and the Hypothesis of Competitive Displacement: Meda fulgida (Cyprinidae) as a Case Study. Copeia, 1994, 1994, 9.	1.3	87
71	Analysis of Sexual Dimorphism in an Endangered Cyprinid Fish (Gila cypha Miller) Using Video Image Technology. Copeia, 1993, 1993, 334.	1.3	26
72	Response to Wayne, Nowak, and Phillips and Henry: Use of Molecular Characters in Conservation Biology. Conservation Biology, 1992, 6, 600-603.	4.7	35

#	Article	IF	CITATIONS
73	Geographic Variation, Taxonomic Status, and Biogeography of Two Widely Distributed African Freshwater Fishes: Ctenopoma petherici and C. kingsleyae (Teleostei: Anabantidae). Copeia, 1992, 1992, 709.	1.3	6
74	Use of Genetic Characters in Conservation Biology. Conservation Biology, 1992, 6, 7-8.	4.7	39
75	Does Morphology Predict Ecology? Hypothesis Testing within a Freshwater Stream Fish Assemblage. Oikos, 1992, 65, 213.	2.7	154
76	Multivariate Morphometric Analysis of Striped Bass, White Bass, and Striped Bass × White Bass Hybrids. North American Journal of Fisheries Management, 1991, 11, 330-338.	1.0	5
77	Rediscovery of Colorado Squawfish, Ptychocheilus lucius (Cyprinidae), in Wyoming. Copeia, 1991, 1991, 1091.	1.3	6
78	A New Species of Nest Building Ctenopoma (Teleostei, Anabantidae) from ZaÃ-re, with a Redescription of Ctenopoma lineatum (Nichols). Copeia, 1991, 1991, 166.	1.3	4
79	Qualitative Characters, Identification of Colorado River Chubs (Cyprinidae: Genus Gila) and the "Art of Seeing Well". Copeia, 1989, 1989, 653.	1.3	26
80	Distribution of Ctenopoma muriei and the Status of Ctenopoma ctenotis (Pisces: Anabantidae). Copeia, 1988, 1988, 487.	1.3	7
81	GEOGRAPHIC PATTERNS OF VARIATION IN OFFSHORE SPOTTED DOLPHINS (STENELLA ATTENUATA) OF THE EASTERN TROPICAL PACIFIC OCEAN. Marine Mammal Science, 1986, 2, 186-213.	1.8	24
82	SEXUAL DIMORPHISM IN SPOTTED DOLPHINS (STENELLA ATTENUATA) IN THE EASTERN TROPICAL PACIFIC OCEAN. Marine Mammal Science, 1985, 1, 1-14.	1.8	28
83	Morphometric Assessment of Sexual Dimorphism in Skeletal Elements of California Gulls. Condor, 1985, 87, 484-493.	1.6	21
84	Statistical comparison of proximity matrices: applications in animal behaviour. Animal Behaviour, 1985, 33, 239-253.	1.9	173
85	Diagnosis and Detection of Cryptic Species: the Tabanus nigrovittatus Complex (Diptera: Tabanidae) in Coastal New Jersey. Annals of the Entomological Society of America, 1984, 77, 587-591.	2.5	17
86	Speciation Rates and Morphological Divergence in Fishes: Tests of Gradual Versus Rectangular Modes of Evolutionary Change. Evolution; International Journal of Organic Evolution, 1982, 36, 224.	2.3	10
87	Morphological Divergence in Fishes: Macroevolutionary Patterns. BioScience, 1982, 32, 683-684.	4.9	O
88	Quantitative matrix comparisons in ecological and evolutionary investigations. Journal of Theoretical Biology, 1982, 99, 777-795.	1.7	179
89	A Comparative Study of Topographical Orientation in Ambystoma (Amphibia: Caudata). Copeia, 1981, 1981, 460.	1.3	46
90	Migration and sexual selection in <i>Ambystoma jeffersonianum</i> . Canadian Journal of Zoology, 1979, 57, 2303-2310.	1.0	42