List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/223625/publications.pdf Version: 2024-02-01

	5268	5394
32,440	83	164
citations	h-index	g-index
212	212	22607
213	213	32607
docs citations	times ranked	citing authors
	32,440 citations 213 docs citations	32,440 83 citations h-index 213 213 docs citations 213 times ranked

#	Article	IF	CITATIONS
1	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	12.6	295
2	Mating-driven variability in olfactory local interneuron wiring. Science Advances, 2022, 8, eabm7723.	10.3	6
3	Isolation and RNA sequencing of single nuclei fromÂDrosophila tissues. STAR Protocols, 2022, 3, 101417.	1.2	10
4	Transcription factor Acj6 controls dendrite targeting via a combinatorial cell-surface code. Neuron, 2022, 110, 2299-2314.e8.	8.1	16
5	Transcriptional and functional motifs defining renal function revealed by single-nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	22
6	A preoptic neuronal population controls fever and appetite during sickness. Nature, 2022, 606, 937-944.	27.8	52
7	GluD2- and Cbln1-mediated competitive interactions shape the dendritic arbors of cerebellar Purkinje cells. Neuron, 2021, 109, 629-644.e8.	8.1	32
8	Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. Cell, 2021, 184, 489-506.e26.	28.9	58
9	Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons. ELife, 2021, 10, .	6.0	30
10	Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila. ELife, 2021, 10, .	6.0	71
11	Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. Cell Reports, 2021, 35, 109123.	6.4	16
12	A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports, 2021, 35, 109274.	6.4	45
13	The relationship between birth timing, circuit wiring, and physiological response properties of cerebellar granule cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
14	Reciprocal repulsions instruct the precise assembly of parallel hippocampal networks. Science, 2021, 372, 1068-1073.	12.6	38
15	Gut cytokines modulate olfaction through metabolic reprogramming of glia. Nature, 2021, 596, 97-102.	27.8	25
16	A neural circuit state change underlying skilled movements. Cell, 2021, 184, 3731-3747.e21.	28.9	45
17	Teneurins. Current Biology, 2021, 31, R936-R937.	3.9	2
18	Architectures of neuronal circuits. Science, 2021, 373, eabg7285.	12.6	112

#	Article	IF	CITATIONS
19	Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging. Cell, 2021, 184, 5107-5121.e14.	28.9	25
20	An Explant System for Time-Lapse Imaging Studies of Olfactory Circuit Assembly in Drosophila . Journal of Visualized Experiments, 2021, , .	0.3	2
21	Neocortex–Cerebellum Circuits for Cognitive Processing. Trends in Neurosciences, 2020, 43, 42-54.	8.6	97
22	The Mind of a Mouse. Cell, 2020, 182, 1372-1376.	28.9	127
23	Deep posteromedial cortical rhythm in dissociation. Nature, 2020, 586, 87-94.	27.8	145
24	Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11068-11075.	7.1	52
25	The Temporal Association Cortex Plays a Key Role in Auditory-Driven Maternal Plasticity. Neuron, 2020, 107, 566-579.e7.	8.1	61
26	Brain Circuit of Claustrophobia-like Behavior in Mice Identified by Upstream Tracing of Sighing. Cell Reports, 2020, 31, 107779.	6.4	20
27	Nurturing Undergraduate Researchers in Biomedical Sciences. Cell, 2020, 182, 1-4.	28.9	133
28	Skilled reaching tasks for head-fixed mice using a robotic manipulandum. Nature Protocols, 2020, 15, 1237-1254.	12.0	17
29	Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting. Current Biology, 2020, 30, 1189-1198.e5.	3.9	43
30	Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators. Cell, 2020, 180, 373-386.e15.	28.9	118
31	Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10055-10066.	7.1	34
32	Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning. Neuron, 2020, 106, 1026-1043.e9.	8.1	70
33	Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron, 2020, 106, 37-65.e5.	8.1	109
34	Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science, 2020, 370, .	12.6	123
35	Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses. ELife, 2020, 9, .	6.0	24
36	LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. ELife, 2020, 9, .	6.0	6

#	Article	IF	CITATIONS
37	Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner olfactory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16068-16073.	7.1	17
38	Temporal evolution of cortical ensembles promoting remote memory retrieval. Nature Neuroscience, 2019, 22, 460-469.	14.8	317
39	Shared Cortex-Cerebellum Dynamics in the Execution and Learning of a Motor Task. Cell, 2019, 177, 669-682.e24.	28.9	130
40	Complementary Genetic Targeting and Monosynaptic Input Mapping Reveal Recruitment and Refinement of Distributed Corticostriatal Ensembles by Cocaine. Neuron, 2019, 104, 916-930.e5.	8.1	34
41	Topological Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic Dissection of Input-Output Relations. Cell Reports, 2019, 26, 159-167.e6.	6.4	81
42	Suppressing Memories by Shrinking the Vesicle Pool. Neuron, 2019, 101, 5-7.	8.1	0
43	Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science, 2019, 364, 253.	12.6	256
44	Ephrin-B3 controls excitatory synapse density through cell-cell competition for EphBs. ELife, 2019, 8, .	6.0	7
45	Functional divergence of Plexin B structural motifs in distinct steps of Drosophila olfactory circuit assembly. ELife, 2019, 8, .	6.0	6
46	Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. ELife, 2019, 8, .	6.0	189
47	Genetic tagging of active neurons in auditory cortex reveals maternal plasticity of coding ultrasonic vocalizations. Nature Communications, 2018, 9, 871.	12.8	41
48	Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron, 2018, 98, 256-281.	8.1	374
49	Functional circuit architecture underlying parental behaviour. Nature, 2018, 556, 326-331.	27.8	290
50	A Subpopulation of Striatal Neurons Mediates Levodopa-Induced Dyskinesia. Neuron, 2018, 97, 787-795.e6.	8.1	97
51	Teneurin-3 controls topographic circuit assembly in the hippocampus. Nature, 2018, 554, 328-333.	27.8	122
52	Mapping Histological Slice Sequences to the Allen Mouse Brain Atlas Without 3D Reconstruction. Frontiers in Neuroinformatics, 2018, 12, 93.	2.5	36
53	Early adolescent Rai1 reactivation reverses transcriptional and social interaction deficits in a mouse model of Smith–Magenis syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10744-10749.	7.1	26
54	Dynamic salience processing in paraventricular thalamus gates associative learning. Science, 2018, 362, 423-429.	12.6	133

#	Article	IF	CITATIONS
55	Editorial overview: Neurotechnologies. Current Opinion in Neurobiology, 2018, 50, iv-vi.	4.2	1
56	Linking neuronal lineage and wiring specificity. Neural Development, 2018, 13, 5.	2.4	37
57	Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell, 2018, 175, 472-487.e20.	28.9	307
58	Stepwise wiring of the Drosophila olfactory map requires specific Plexin B levels. ELife, 2018, 7, .	6.0	16
59	A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. Neuron, 2017, 93, 822-839.e6.	8.1	250
60	Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex. Neuron, 2017, 94, 891-907.e6.	8.1	316
61	Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature, 2017, 545, 477-481.	27.8	246
62	Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science, 2017, 356, 722-726.	12.6	130
63	Genetic strategies to access activated neurons. Current Opinion in Neurobiology, 2017, 45, 121-129.	4.2	121
64	Breathing control center neurons that promote arousal in mice. Science, 2017, 355, 1411-1415.	12.6	176
65	Cerebellar granule cells encode the expectation of reward. Nature, 2017, 544, 96-100.	27.8	408
66	Gating of social reward by oxytocin in the ventral tegmental area. Science, 2017, 357, 1406-1411.	12.6	414
67	Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature, 2017, 549, 345-350.	27.8	94
68	Thirst-associated preoptic neurons encode an aversive motivational drive. Science, 2017, 357, 1149-1155.	12.6	233
69	A bitter–sweet symphony. Nature, 2017, 548, 285-287.	27.8	1
70	The MutAnts Are Here. Cell, 2017, 170, 601-602.	28.9	5
71	Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing. Cell, 2017, 171, 1206-1220.e22.	28.9	235
72	Fibroblast growth factor signaling instructs ensheathing glia wrapping of <i>Drosophila</i> olfactory glomeruli. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7505-7512.	7.1	48

#	Article	IF	CITATIONS
73	Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. ELife, 2017, 6, .	6.0	51
74	Cell type-specific long-range connections of basal forebrain circuit. ELife, 2016, 5, .	6.0	119
75	Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences. Cell, 2016, 165, 1776-1788.	28.9	295
76	Molecular and Neural Functions of Rai1 , the Causal Gene for Smith-Magenis Syndrome. Neuron, 2016, 92, 392-406.	8.1	51
77	Developmental Sculpting of Intracortical Circuits by MHC Class I H2-Db and H2-Kb. Cerebral Cortex, 2016, 26, 1453-1463.	2.9	33
78	Cas9-triggered chain ablation of cas9 as a gene drive brake. Nature Biotechnology, 2016, 34, 137-138.	17.5	60
79	Improved and expanded Q-system reagents for genetic manipulations. Nature Methods, 2015, 12, 219-222.	19.0	159
80	Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons. Neuron, 2015, 85, 429-438.	8.1	285
81	Intersectional Illumination of Neural Circuit Function. Neuron, 2015, 85, 889-892.	8.1	9
82	Toll Receptors Instruct Axon and Dendrite Targeting and Participate in Synaptic Partner Matching in a Drosophila Olfactory Circuit. Neuron, 2015, 85, 1013-1028.	8.1	85
83	Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell, 2015, 162, 635-647.	28.9	608
84	Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell, 2015, 162, 622-634.	28.9	777
85	Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature, 2015, 524, 88-92.	27.8	601
86	Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses. Journal of Neuroscience, 2015, 35, 8979-8985.	3.6	355
87	Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nature Communications, 2015, 6, 6768.	12.8	139
88	A transcriptional reporter of intracellular Ca2+ in Drosophila. Nature Neuroscience, 2015, 18, 917-925.	14.8	75
89	It takes the world to understand the brain. Science, 2015, 350, 42-44.	12.6	44
90	Control of REM sleep by ventral medulla GABAergic neurons. Nature, 2015, 526, 435-438.	27.8	234

#	Article	IF	CITATIONS
91	Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing. Nature Neuroscience, 2015, 18, 1687-1697.	14.8	158
92	Basal forebrain circuit for sleep-wake control. Nature Neuroscience, 2015, 18, 1641-1647.	14.8	405
93	Organization of the Locus Coeruleus-Norepinephrine System. Current Biology, 2015, 25, R1051-R1056.	3.9	390
94	Extremely Sparse Olfactory Inputs Are Sufficient to Mediate Innate Aversion in Drosophila. PLoS ONE, 2015, 10, e0125986.	2.5	20
95	Functional transformations of odor inputs in the mouse olfactory bulb. Frontiers in Neural Circuits, 2014, 8, 129.	2.8	30
96	Deterministic Progenitor Behavior and Unitary Production of Neurons in the Neocortex. Cell, 2014, 159, 775-788.	28.9	354
97	Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science, 2014, 346, 626-629.	12.6	93
98	Genetic Control of Wiring Specificity in the Fly Olfactory System. Genetics, 2014, 196, 17-29.	2.9	98
99	Drosophila Strip serves as a platform for early endosome organization during axon elongation. Nature Communications, 2014, 5, 5180.	12.8	40
100	Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons. Neuron, 2014, 83, 645-662.	8.1	284
101	Long-range and local circuits for top-down modulation of visual cortex processing. Science, 2014, 345, 660-665.	12.6	688
102	Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8850-8855.	7.1	219
103	Mosaic Analysis with Double Markers (MADM) in Mice. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080366.	0.3	11
104	A molecular basis for classic blond hair color in Europeans. Nature Genetics, 2014, 46, 748-752.	21.4	154
105	Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. ELife, 2014, 3, e03726.	6.0	95
106	Mosaic Analysis with Double Markers Reveals Cell-Type-Specific Paternal Growth Dominance. Cell Reports, 2013, 3, 960-967.	6.4	48
107	Dissecting Local Circuits: Parvalbumin Interneurons Underlie Broad Feedback Control of Olfactory Bulb Output. Neuron, 2013, 80, 1232-1245.	8.1	279
108	Linking Cell Fate, Trajectory Choice, and Target Selection: Genetic Analysis of Sema-2b in Olfactory Axon Targeting. Neuron, 2013, 78, 673-686.	8.1	54

#	Article	IF	CITATIONS
109	GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons. Neuron, 2013, 79, 917-931.	8.1	111
110	Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation. Nature Neuroscience, 2013, 16, 683-691.	14.8	25
111	Specific Kinematics and Motor-Related Neurons for Aversive Chemotaxis in Drosophila. Current Biology, 2013, 23, 1163-1172.	3.9	28
112	Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations. Neuron, 2013, 78, 773-784.	8.1	490
113	The SUMO Protease Verloren Regulates Dendrite and Axon Targeting in Olfactory Projection Neurons. Journal of Neuroscience, 2012, 32, 8331-8340.	3.6	17
114	Trans-synaptic Teneurin signalling in neuromuscular synapse organization and target choice. Nature, 2012, 484, 237-241.	27.8	195
115	Kv1.1â€dependent control of hippocampal neuron number as revealed by mosaic analysis with double markers. Journal of Physiology, 2012, 590, 2645-2658.	2.9	12
116	Extensions of MADM (Mosaic Analysis with Double Markers) in Mice. PLoS ONE, 2012, 7, e33332.	2.5	49
117	Teneurins instruct synaptic partner matching in an olfactory map. Nature, 2012, 484, 201-207.	27.8	217
118	Using the Q system in Drosophila melanogaster. Nature Protocols, 2011, 6, 1105-1120.	12.0	55
119	Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7902-7907.	7.1	214
120	Mosaic Analysis with Double Markers Reveals Tumor Cell of Origin in Glioma. Cell, 2011, 146, 209-221.	28.9	571
121	A Combinatorial Semaphorin Code Instructs the Initial Steps of Sensory Circuit Assembly in the Drosophila CNS. Neuron, 2011, 70, 281-298.	8.1	75
122	Secreted Semaphorins from Degenerating Larval ORN Axons Direct Adult Projection Neuron Dendrite Targeting. Neuron, 2011, 72, 734-747.	8.1	64
123	Role of Leucine-Rich Repeat Proteins in the Development and Function of Neural Circuits. Annual Review of Cell and Developmental Biology, 2011, 27, 697-729.	9.4	133
124	Cortical representations of olfactory input by trans-synaptic tracing. Nature, 2011, 472, 191-196.	27.8	478
125	The chromatin remodeling factor Bap55 functions through the TIP60 complex to regulate olfactory projection neuron dendrite targeting. Neural Development, 2011, 6, 5.	2.4	49
126	Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15414-15419.	7.1	172

#	Article	IF	CITATIONS
127	The olfactory circuit of the fruit fly Drosophila melanogaster. Science China Life Sciences, 2010, 53, 472-484.	4.9	22
128	Ten years of Nature Reviews Neuroscience: insights from the highly cited. Nature Reviews Neuroscience, 2010, 11, 718-726.	10.2	32
129	Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nature Neuroscience, 2010, 13, 439-449.	14.8	310
130	Visualizing the Distribution of Synapses from Individual Neurons in the Mouse Brain. PLoS ONE, 2010, 5, e11503.	2.5	112
131	Histone Deacetylase Rpd3 Regulates Olfactory Projection Neuron Dendrite Targeting via the Transcription Factor Prospero. Journal of Neuroscience, 2010, 30, 9939-9946.	3.6	37
132	The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic Analysis. Cell, 2010, 141, 536-548.	28.9	531
133	Patterning Axon Targeting of Olfactory Receptor Neurons by Coupled Hedgehog Signaling at Two Distinct Steps. Cell, 2010, 142, 954-966.	28.9	36
134	Genetic Mosaic Dissection of Lis1 and Ndel1 in Neuronal Migration. Neuron, 2010, 68, 695-709.	8.1	215
135	Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. Nature Neuroscience, 2009, 12, 1542-1550.	14.8	103
136	Uncoupling Dendrite Growth and Patterning: Single-Cell Knockout Analysis of NMDA Receptor 2B. Neuron, 2009, 62, 205-217.	8.1	160
137	MicroRNA Processing Pathway Regulates Olfactory Neuron Morphogenesis. Current Biology, 2008, 18, 1754-1759.	3.9	67
138	Genetic Dissection of Neural Circuits. Neuron, 2008, 57, 634-660.	8.1	714
139	piggyBac-Based Mosaic Screen Identifies a Postmitotic Function for Cohesin in Regulating Developmental Axon Pruning. Developmental Cell, 2008, 14, 227-238.	7.0	212
140	Genomic Analysis of Drosophila Neuronal Remodeling: A Role for the RNA-Binding Protein Boule as a Negative Regulator of Axon Pruning. Journal of Neuroscience, 2008, 28, 6092-6103.	3.6	46
141	Timing Neurogenesis and Differentiation: Insights from Quantitative Clonal Analyses of Cerebellar Granule Cells. Journal of Neuroscience, 2008, 28, 2301-2312.	3.6	164
142	Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM). Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4495-4500.	7.1	73
143	Temporal Target Restriction of Olfactory Receptor Neurons by Semaphorin-1a/PlexinA-Mediated Axon-Axon Interactions. Neuron, 2007, 53, 185-200.	8.1	140
144	Development of Continuous and Discrete Neural Maps. Neuron, 2007, 56, 284-300.	8.1	189

#	Article	lF	CITATIONS
145	Graded Expression of Semaphorin-1a Cell-Autonomously Directs Dendritic Targeting of Olfactory Projection Neurons. Cell, 2007, 128, 399-410.	28.9	153
146	Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation. Cell, 2007, 128, 1187-1203.	28.9	605
147	A global doubleâ€fluorescent Cre reporter mouse. Genesis, 2007, 45, 593-605.	1.6	2,963
148	Lola regulates Drosophila olfactory projection neuron identity and targeting specificity. Neural Development, 2007, 2, 14.	2.4	51
149	Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nature Neuroscience, 2007, 10, 828-837.	14.8	100
150	Fly MARCM and mouse MADM: Genetic methods of labeling and manipulating single neurons. Brain Research Reviews, 2007, 55, 220-227.	9.0	53
151	Intrinsic Control of Precise Dendritic Targeting by an Ensemble of Transcription Factors. Current Biology, 2007, 17, 278-285.	3.9	75
152	Wlds Protection Distinguishes Axon Degeneration following Injury from Naturally Occurring Developmental Pruning. Neuron, 2006, 50, 883-895.	8.1	254
153	Two gradients are better than one. Nature, 2006, 439, 23-24.	27.8	14
154	Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. Nature Neuroscience, 2006, 9, 349-355.	14.8	158
155	A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nature Protocols, 2006, 1, 2583-2589.	12.0	187
156	A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nature Protocols, 2006, 1, 2110-2115.	12.0	298
157	Wiring Stability of the Adult Drosophila Olfactory Circuit after Lesion. Journal of Neuroscience, 2006, 26, 3367-3376.	3.6	81
158	Glomerular Maps without Cellular Redundancy at Successive Levels of the Drosophila Larval Olfactory Circuit. Current Biology, 2005, 15, 982-992.	3.9	143
159	Developmentally programmed remodeling of the Drosophilaolfactory circuit. Development (Cambridge), 2005, 132, 725-737.	2.5	158
160	Mosaic Analysis with Double Markers in Mice. Cell, 2005, 121, 479-492.	28.9	508
161	Developmental origin of wiring specificity in the olfactory system of Drosophila. Development (Cambridge), 2004, 131, 117-130.	2.5	211
162	Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions. Nature Neuroscience, 2004, 7, 819-825.	14.8	102

#	Article	IF	CITATIONS
163	Glia Engulf Degenerating Axons during Developmental Axon Pruning. Current Biology, 2004, 14, 678-684.	3.9	202
164	Diverse Functions of N-Cadherin in Dendritic and Axonal Terminal Arborization of Olfactory Projection Neurons. Neuron, 2004, 42, 63-75.	8.1	130
165	Food for thought: a receptor finds its ligand. Nature Neuroscience, 2003, 6, 1119-1120.	14.8	4
166	From Lineage to Wiring Specificity. Cell, 2003, 112, 157-167.	28.9	150
167	Representation of the Glomerular Olfactory Map in the Drosophila Brain. Cell, 2002, 109, 243-255.	28.9	429
168	Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends in Neurosciences, 2001, 24, 251-254.	8.6	845
169	Target neuron prespecification in the olfactory map of Drosophila. Nature, 2001, 414, 204-208.	27.8	382
170	Cell-Autonomous Requirement of the USP/EcR-B Ecdysone Receptor for Mushroom Body Neuronal Remodeling in Drosophila. Neuron, 2000, 28, 807-818.	8.1	255
171	Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis. Neuron, 1999, 22, 451-461.	8.1	2,368
172	Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature, 1996, 379, 837-840.	27.8	436
173	Principles of Neurobiology. , 0, , .		35
174	Temporal Association Cortex - A Cortical Hub for Processing Infant Vocalizations. SSRN Electronic Journal, 0, , .	0.4	1
175	Classifying <i>Drosophila</i> Olfactory Projection Neuron Subtypes by Singlecell RNA Sequencing. SSRN Electronic Journal, 0, , .	0.4	0