Liqun Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/223625/publications.pdf

Version: 2024-02-01

		5268	5394
175	32,440	83	164
papers	citations	h-index	g-index
213	213	213	32607
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A global doubleâ€fluorescent Cre reporter mouse. Genesis, 2007, 45, 593-605.	1.6	2,963
2	Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis. Neuron, 1999, 22, 451-461.	8.1	2,368
3	Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends in Neurosciences, 2001, 24, 251-254.	8.6	845
4	Circuit Architecture of VTA Dopamine Neurons Revealed by Systematic Input-Output Mapping. Cell, 2015, 162, 622-634.	28.9	777
5	Genetic Dissection of Neural Circuits. Neuron, 2008, 57, 634-660.	8.1	714
6	Long-range and local circuits for top-down modulation of visual cortex processing. Science, 2014, 345, 660-665.	12.6	688
7	Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell, 2015, 162, 635-647.	28.9	608
8	Comprehensive Maps of Drosophila Higher Olfactory Centers: Spatially Segregated Fruit and Pheromone Representation. Cell, 2007, 128, 1187-1203.	28.9	605
9	Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature, 2015, 524, 88-92.	27.8	601
10	Mosaic Analysis with Double Markers Reveals Tumor Cell of Origin in Glioma. Cell, 2011, 146, 209-221.	28.9	571
11	The Q System: A Repressible Binary System for Transgene Expression, Lineage Tracing, and Mosaic Analysis. Cell, 2010, 141, 536-548.	28.9	531
12	Mosaic Analysis with Double Markers in Mice. Cell, 2005, 121, 479-492.	28.9	508
13	Permanent Genetic Access to Transiently Active Neurons via TRAP: Targeted Recombination in Active Populations. Neuron, 2013, 78, 773-784.	8.1	490
14	Cortical representations of olfactory input by trans-synaptic tracing. Nature, 2011, 472, 191-196.	27.8	478
15	Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature, 1996, 379, 837-840.	27.8	436
16	Representation of the Glomerular Olfactory Map in the Drosophila Brain. Cell, 2002, 109, 243-255.	28.9	429
17	Gating of social reward by oxytocin in the ventral tegmental area. Science, 2017, 357, 1406-1411.	12.6	414
18	Cerebellar granule cells encode the expectation of reward. Nature, 2017, 544, 96-100.	27.8	408

#	Article	lF	Citations
19	Basal forebrain circuit for sleep-wake control. Nature Neuroscience, 2015, 18, 1641-1647.	14.8	405
20	Organization of the Locus Coeruleus-Norepinephrine System. Current Biology, 2015, 25, R1051-R1056.	3.9	390
21	Target neuron prespecification in the olfactory map of Drosophila. Nature, 2001, 414, 204-208.	27.8	382
22	Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron, 2018, 98, 256-281.	8.1	374
23	Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses. Journal of Neuroscience, 2015, 35, 8979-8985.	3.6	355
24	Deterministic Progenitor Behavior and Unitary Production of Neurons in the Neocortex. Cell, 2014, 159, 775-788.	28.9	354
25	Temporal evolution of cortical ensembles promoting remote memory retrieval. Nature Neuroscience, 2019, 22, 460-469.	14.8	317
26	Global Representations of Goal-Directed Behavior in Distinct Cell Types of Mouse Neocortex. Neuron, 2017, 94, 891-907.e6.	8.1	316
27	Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nature Neuroscience, 2010, 13, 439-449.	14.8	310
28	Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems. Cell, 2018, 175, 472-487.e20.	28.9	307
29	A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nature Protocols, 2006, 1, 2110-2115.	12.0	298
30	Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct Experiences. Cell, 2016, 165, 1776-1788.	28.9	295
31	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	12.6	295
32	Functional circuit architecture underlying parental behaviour. Nature, 2018, 556, 326-331.	27.8	290
33	Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons. Neuron, 2015, 85, 429-438.	8.1	285
34	Presynaptic Partners of Dorsal Raphe Serotonergic and GABAergic Neurons. Neuron, 2014, 83, 645-662.	8.1	284
35	Dissecting Local Circuits: Parvalbumin Interneurons Underlie Broad Feedback Control of Olfactory Bulb Output. Neuron, 2013, 80, 1232-1245.	8.1	279
36	Thirst regulates motivated behavior through modulation of brainwide neural population dynamics. Science, 2019, 364, 253.	12.6	256

#	Article	IF	CITATIONS
37	Cell-Autonomous Requirement of the USP/EcR-B Ecdysone Receptor for Mushroom Body Neuronal Remodeling in Drosophila. Neuron, 2000, 28, 807-818.	8.1	255
38	Wlds Protection Distinguishes Axon Degeneration following Injury from Naturally Occurring Developmental Pruning. Neuron, 2006, 50, 883-895.	8.1	254
39	A Brainstem-Spinal Cord Inhibitory Circuit for Mechanical Pain Modulation by GABA and Enkephalins. Neuron, 2017, 93, 822-839.e6.	8.1	250
40	Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature, 2017, 545, 477-481.	27.8	246
41	Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing. Cell, 2017, 171, 1206-1220.e22.	28.9	235
42	Control of REM sleep by ventral medulla GABAergic neurons. Nature, 2015, 526, 435-438.	27.8	234
43	Thirst-associated preoptic neurons encode an aversive motivational drive. Science, 2017, 357, 1149-1155.	12.6	233
44	Existing cardiomyocytes generate cardiomyocytes at a low rate after birth in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8850-8855.	7.1	219
45	Teneurins instruct synaptic partner matching in an olfactory map. Nature, 2012, 484, 201-207.	27.8	217
46	Genetic Mosaic Dissection of Lis1 and Ndel1 in Neuronal Migration. Neuron, 2010, 68, 695-709.	8.1	215
47	Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7902-7907.	7.1	214
48	piggyBac-Based Mosaic Screen Identifies a Postmitotic Function for Cohesin in Regulating Developmental Axon Pruning. Developmental Cell, 2008, 14, 227-238.	7.0	212
49	Developmental origin of wiring specificity in the olfactory system of Drosophila. Development (Cambridge), 2004, 131, 117-130.	2.5	211
50	Glia Engulf Degenerating Axons during Developmental Axon Pruning. Current Biology, 2004, 14, 678-684.	3.9	202
51	Trans-synaptic Teneurin signalling in neuromuscular synapse organization and target choice. Nature, 2012, 484, 237-241.	27.8	195
52	Development of Continuous and Discrete Neural Maps. Neuron, 2007, 56, 284-300.	8.1	189
53	Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. ELife, 2019, 8, .	6.0	189
54	A protocol for mosaic analysis with a repressible cell marker (MARCM) in Drosophila. Nature Protocols, 2006, 1, 2583-2589.	12.0	187

#	Article	IF	CITATIONS
55	Breathing control center neurons that promote arousal in mice. Science, 2017, 355, 1411-1415.	12.6	176
56	Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15414-15419.	7.1	172
57	Timing Neurogenesis and Differentiation: Insights from Quantitative Clonal Analyses of Cerebellar Granule Cells. Journal of Neuroscience, 2008, 28, 2301-2312.	3.6	164
58	Uncoupling Dendrite Growth and Patterning: Single-Cell Knockout Analysis of NMDA Receptor 2B. Neuron, 2009, 62, 205-217.	8.1	160
59	Improved and expanded Q-system reagents for genetic manipulations. Nature Methods, 2015, 12, 219-222.	19.0	159
60	Developmentally programmed remodeling of the Drosophilaolfactory circuit. Development (Cambridge), 2005, 132, 725-737.	2.5	158
61	Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. Nature Neuroscience, 2006, 9, 349-355.	14.8	158
62	Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing. Nature Neuroscience, 2015, 18, 1687-1697.	14.8	158
63	A molecular basis for classic blond hair color in Europeans. Nature Genetics, 2014, 46, 748-752.	21.4	154
64	Graded Expression of Semaphorin-1a Cell-Autonomously Directs Dendritic Targeting of Olfactory Projection Neurons. Cell, 2007, 128, 399-410.	28.9	153
65	From Lineage to Wiring Specificity. Cell, 2003, 112, 157-167.	28.9	150
66	Deep posteromedial cortical rhythm in dissociation. Nature, 2020, 586, 87-94.	27.8	145
67	Glomerular Maps without Cellular Redundancy at Successive Levels of the Drosophila Larval Olfactory Circuit. Current Biology, 2005, 15, 982-992.	3.9	143
68	Temporal Target Restriction of Olfactory Receptor Neurons by Semaphorin-1a/PlexinA-Mediated Axon-Axon Interactions. Neuron, 2007, 53, 185-200.	8.1	140
69	Prion-like transmission of neuronal huntingtin aggregates to phagocytic glia in the Drosophila brain. Nature Communications, 2015, 6, 6768.	12.8	139
70	Role of Leucine-Rich Repeat Proteins in the Development and Function of Neural Circuits. Annual Review of Cell and Developmental Biology, 2011, 27, 697-729.	9.4	133
71	Dynamic salience processing in paraventricular thalamus gates associative learning. Science, 2018, 362, 423-429.	12.6	133
72	Nurturing Undergraduate Researchers in Biomedical Sciences. Cell, 2020, 182, 1-4.	28.9	133

#	Article	IF	Citations
73	Diverse Functions of N-Cadherin in Dendritic and Axonal Terminal Arborization of Olfactory Projection Neurons. Neuron, 2004, 42, 63-75.	8.1	130
74	Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science, 2017, 356, 722-726.	12.6	130
75	Shared Cortex-Cerebellum Dynamics in the Execution and Learning of a Motor Task. Cell, 2019, 177, 669-682.e24.	28.9	130
76	The Mind of a Mouse. Cell, 2020, 182, 1372-1376.	28.9	127
77	Cerebellar nuclei evolved by repeatedly duplicating a conserved cell-type set. Science, 2020, 370, .	12.6	123
78	Teneurin-3 controls topographic circuit assembly in the hippocampus. Nature, 2018, 554, 328-333.	27.8	122
79	Genetic strategies to access activated neurons. Current Opinion in Neurobiology, 2017, 45, 121-129.	4.2	121
80	Cell type-specific long-range connections of basal forebrain circuit. ELife, 2016, 5, .	6.0	119
81	Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators. Cell, 2020, 180, 373-386.e15.	28.9	118
82	Visualizing the Distribution of Synapses from Individual Neurons in the Mouse Brain. PLoS ONE, 2010, 5, e11503.	2.5	112
83	Architectures of neuronal circuits. Science, 2021, 373, eabg7285.	12.6	112
84	GABAergic Projection Neurons Route Selective Olfactory Inputs to Specific Higher-Order Neurons. Neuron, 2013, 79, 917-931.	8.1	111
85	Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron, 2020, 106, 37-65.e5.	8.1	109
86	Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. Nature Neuroscience, 2009, 12, 1542-1550.	14.8	103
87	Olfactory receptor neuron axon targeting: intrinsic transcriptional control and hierarchical interactions. Nature Neuroscience, 2004, 7, 819-825.	14.8	102
88	Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nature Neuroscience, 2007, 10, 828-837.	14.8	100
89	Genetic Control of Wiring Specificity in the Fly Olfactory System. Genetics, 2014, 196, 17-29.	2.9	98
90	A Subpopulation of Striatal Neurons Mediates Levodopa-Induced Dyskinesia. Neuron, 2018, 97, 787-795.e6.	8.1	97

#	Article	IF	Citations
91	Neocortex–Cerebellum Circuits for Cognitive Processing. Trends in Neurosciences, 2020, 43, 42-54.	8.6	97
92	Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. ELife, 2014, 3, e03726.	6.0	95
93	Rabies screen reveals GPe control of cocaine-triggered plasticity. Nature, 2017, 549, 345-350.	27.8	94
94	Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science, 2014, 346, 626-629.	12.6	93
95	Toll Receptors Instruct Axon and Dendrite Targeting and Participate in Synaptic Partner Matching in a Drosophila Olfactory Circuit. Neuron, 2015, 85, 1013-1028.	8.1	85
96	Wiring Stability of the Adult Drosophila Olfactory Circuit after Lesion. Journal of Neuroscience, 2006, 26, 3367-3376.	3.6	81
97	Topological Organization of Ventral Tegmental Area Connectivity Revealed by Viral-Genetic Dissection of Input-Output Relations. Cell Reports, 2019, 26, 159-167.e6.	6.4	81
98	Intrinsic Control of Precise Dendritic Targeting by an Ensemble of Transcription Factors. Current Biology, 2007, 17, 278-285.	3.9	75
99	A Combinatorial Semaphorin Code Instructs the Initial Steps of Sensory Circuit Assembly in the Drosophila CNS. Neuron, 2011, 70, 281-298.	8.1	75
100	A transcriptional reporter of intracellular Ca2+ in Drosophila. Nature Neuroscience, 2015, 18, 917-925.	14.8	75
101	Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM). Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4495-4500.	7.1	73
102	Single-cell transcriptomes of developing and adult olfactory receptor neurons in Drosophila. ELife, $2021,10,.$	6.0	71
103	Amygdala-Midbrain Connections Modulate Appetitive and Aversive Learning. Neuron, 2020, 106, 1026-1043.e9.	8.1	70
104	MicroRNA Processing Pathway Regulates Olfactory Neuron Morphogenesis. Current Biology, 2008, 18, 1754-1759.	3.9	67
105	Secreted Semaphorins from Degenerating Larval ORN Axons Direct Adult Projection Neuron Dendrite Targeting. Neuron, 2011, 72, 734-747.	8.1	64
106	The Temporal Association Cortex Plays a Key Role in Auditory-Driven Maternal Plasticity. Neuron, 2020, 107, 566-579.e7.	8.1	61
107	Cas9-triggered chain ablation of cas9 as a gene drive brake. Nature Biotechnology, 2016, 34, 137-138.	17.5	60
108	Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. Cell, 2021, 184, 489-506.e26.	28.9	58

#	Article	IF	CITATIONS
109	Using the Q system in Drosophila melanogaster. Nature Protocols, 2011, 6, 1105-1120.	12.0	55
110	Linking Cell Fate, Trajectory Choice, and Target Selection: Genetic Analysis of Sema-2b in Olfactory Axon Targeting. Neuron, 2013, 78, 673-686.	8.1	54
111	Fly MARCM and mouse MADM: Genetic methods of labeling and manipulating single neurons. Brain Research Reviews, 2007, 55, 220-227.	9.0	53
112	Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11068-11075.	7.1	52
113	A preoptic neuronal population controls fever and appetite during sickness. Nature, 2022, 606, 937-944.	27.8	52
114	Lola regulates Drosophila olfactory projection neuron identity and targeting specificity. Neural Development, 2007, 2, 14.	2.4	51
115	Molecular and Neural Functions of Rai1 , the Causal Gene for Smith-Magenis Syndrome. Neuron, 2016, 92, 392-406.	8.1	51
116	Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. ELife, 2017, 6, .	6.0	51
117	The chromatin remodeling factor Bap55 functions through the TIP60 complex to regulate olfactory projection neuron dendrite targeting. Neural Development, 2011, 6, 5.	2.4	49
118	Extensions of MADM (Mosaic Analysis with Double Markers) in Mice. PLoS ONE, 2012, 7, e33332.	2.5	49
119	Mosaic Analysis with Double Markers Reveals Cell-Type-Specific Paternal Growth Dominance. Cell Reports, 2013, 3, 960-967.	6.4	48
120	Fibroblast growth factor signaling instructs ensheathing glia wrapping of <i>Drosophila</i> olfactory glomeruli. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7505-7512.	7.1	48
121	Genomic Analysis of Drosophila Neuronal Remodeling: A Role for the RNA-Binding Protein Boule as a Negative Regulator of Axon Pruning. Journal of Neuroscience, 2008, 28, 6092-6103.	3.6	46
122	A genome-wide library of MADM mice for single-cell genetic mosaic analysis. Cell Reports, 2021, 35, 109274.	6.4	45
123	A neural circuit state change underlying skilled movements. Cell, 2021, 184, 3731-3747.e21.	28.9	45
124	It takes the world to understand the brain. Science, 2015, 350, 42-44.	12.6	44
125	Single-Cell Transcriptomes Reveal Diverse Regulatory Strategies for Olfactory Receptor Expression and Axon Targeting. Current Biology, 2020, 30, 1189-1198.e5.	3.9	43
126	Genetic tagging of active neurons in auditory cortex reveals maternal plasticity of coding ultrasonic vocalizations. Nature Communications, 2018, 9, 871.	12.8	41

#	Article	IF	Citations
127	Drosophila Strip serves as a platform for early endosome organization during axon elongation. Nature Communications, 2014, 5, 5180.	12.8	40
128	Reciprocal repulsions instruct the precise assembly of parallel hippocampal networks. Science, 2021, 372, 1068-1073.	12.6	38
129	Histone Deacetylase Rpd3 Regulates Olfactory Projection Neuron Dendrite Targeting via the Transcription Factor Prospero. Journal of Neuroscience, 2010, 30, 9939-9946.	3.6	37
130	Linking neuronal lineage and wiring specificity. Neural Development, 2018, 13, 5.	2.4	37
131	Patterning Axon Targeting of Olfactory Receptor Neurons by Coupled Hedgehog Signaling at Two Distinct Steps. Cell, 2010, 142, 954-966.	28.9	36
132	Mapping Histological Slice Sequences to the Allen Mouse Brain Atlas Without 3D Reconstruction. Frontiers in Neuroinformatics, 2018, 12, 93.	2.5	36
133	Principles of Neurobiology., 0,,.		35
134	Complementary Genetic Targeting and Monosynaptic Input Mapping Reveal Recruitment and Refinement of Distributed Corticostriatal Ensembles by Cocaine. Neuron, 2019, 104, 916-930.e5.	8.1	34
135	Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10055-10066.	7.1	34
136	Developmental Sculpting of Intracortical Circuits by MHC Class I H2-Db and H2-Kb. Cerebral Cortex, 2016, 26, 1453-1463.	2.9	33
137	Ten years of Nature Reviews Neuroscience: insights from the highly cited. Nature Reviews Neuroscience, 2010, 11, 718-726.	10.2	32
138	GluD2- and Cbln1-mediated competitive interactions shape the dendritic arbors of cerebellar Purkinje cells. Neuron, 2021, 109, 629-644.e8.	8.1	32
139	Functional transformations of odor inputs in the mouse olfactory bulb. Frontiers in Neural Circuits, 2014, 8, 129.	2.8	30
140	Temporal evolution of single-cell transcriptomes of Drosophila olfactory projection neurons. ELife, 2021, 10, .	6.0	30
141	Specific Kinematics and Motor-Related Neurons for Aversive Chemotaxis in Drosophila. Current Biology, 2013, 23, 1163-1172.	3.9	28
142	Early adolescent Rai1 reactivation reverses transcriptional and social interaction deficits in a mouse model of Smith–Magenis syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10744-10749.	7.1	26
143	Meigo governs dendrite targeting specificity by modulating Ephrin level and N-glycosylation. Nature Neuroscience, 2013, 16, 683-691.	14.8	25
144	Gut cytokines modulate olfaction through metabolic reprogramming of glia. Nature, 2021, 596, 97-102.	27.8	25

#	Article	IF	Citations
145	Cellular bases of olfactory circuit assembly revealed by systematic time-lapse imaging. Cell, 2021, 184, 5107-5121.e14.	28.9	25
146	Phagocytic glia are obligatory intermediates in transmission of mutant huntingtin aggregates across neuronal synapses. ELife, 2020, 9, .	6.0	24
147	The olfactory circuit of the fruit fly Drosophila melanogaster. Science China Life Sciences, 2010, 53, 472-484.	4.9	22
148	Transcriptional and functional motifs defining renal function revealed by single-nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	22
149	Brain Circuit of Claustrophobia-like Behavior in Mice Identified by Upstream Tracing of Sighing. Cell Reports, 2020, 31, 107779.	6.4	20
150	Extremely Sparse Olfactory Inputs Are Sufficient to Mediate Innate Aversion in Drosophila. PLoS ONE, 2015, 10, e0125986.	2.5	20
151	The SUMO Protease Verloren Regulates Dendrite and Axon Targeting in Olfactory Projection Neurons. Journal of Neuroscience, 2012, 32, 8331-8340.	3.6	17
152	Transsynaptic Fish-lips signaling prevents misconnections between nonsynaptic partner olfactory neurons. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16068-16073.	7.1	17
153	Skilled reaching tasks for head-fixed mice using a robotic manipulandum. Nature Protocols, 2020, 15, 1237-1254.	12.0	17
154	Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. Cell Reports, 2021, 35, 109123.	6.4	16
155	Stepwise wiring of the Drosophila olfactory map requires specific Plexin B levels. ELife, 2018, 7, .	6.0	16
156	Transcription factor Acj6 controls dendrite targeting via a combinatorial cell-surface code. Neuron, 2022, 110, 2299-2314.e8.	8.1	16
157	Two gradients are better than one. Nature, 2006, 439, 23-24.	27.8	14
158	The relationship between birth timing, circuit wiring, and physiological response properties of cerebellar granule cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	14
159	Kv1.1â€dependent control of hippocampal neuron number as revealed by mosaic analysis with double markers. Journal of Physiology, 2012, 590, 2645-2658.	2.9	12
160	Mosaic Analysis with Double Markers (MADM) in Mice. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot080366.	0.3	11
161	Isolation and RNA sequencing of single nuclei fromÂDrosophila tissues. STAR Protocols, 2022, 3, 101417.	1.2	10
162	Intersectional Illumination of Neural Circuit Function. Neuron, 2015, 85, 889-892.	8.1	9

#	Article	IF	CITATIONS
163	Ephrin-B3 controls excitatory synapse density through cell-cell competition for EphBs. ELife, 2019, 8, .	6.0	7
164	Functional divergence of Plexin B structural motifs in distinct steps of Drosophila olfactory circuit assembly. ELife, $2019, 8, .$	6.0	6
165	LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. ELife, 2020, 9, .	6.0	6
166	Mating-driven variability in olfactory local interneuron wiring. Science Advances, 2022, 8, eabm7723.	10.3	6
167	The MutAnts Are Here. Cell, 2017, 170, 601-602.	28.9	5
168	Food for thought: a receptor finds its ligand. Nature Neuroscience, 2003, 6, 1119-1120.	14.8	4
169	Teneurins. Current Biology, 2021, 31, R936-R937.	3.9	2
170	An Explant System for Time-Lapse Imaging Studies of Olfactory Circuit Assembly in Drosophila . Journal of Visualized Experiments, 2021, , .	0.3	2
171	A bitter–sweet symphony. Nature, 2017, 548, 285-287.	27.8	1
172	Editorial overview: Neurotechnologies. Current Opinion in Neurobiology, 2018, 50, iv-vi.	4.2	1
173	Temporal Association Cortex - A Cortical Hub for Processing Infant Vocalizations. SSRN Electronic Journal, 0, , .	0.4	1
174	Suppressing Memories by Shrinking the Vesicle Pool. Neuron, 2019, 101, 5-7.	8.1	0
175	Classifying $\langle i \rangle$ Drosophila $\langle i \rangle$ Olfactory Projection Neuron Subtypes by Singlecell RNA Sequencing. SSRN Electronic Journal, 0, , .	0.4	O