
Wenxing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2236115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2017, 56, 6937-6941.	13.8	1,542
2	General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nature Catalysis, 2018, 1, 63-72.	34.4	1,476
3	Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. Journal of the American Chemical Society, 2017, 139, 17281-17284.	13.7	1,220
4	lonic Exchange of Metal–Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO ₂ . Journal of the American Chemical Society, 2017, 139, 8078-8081.	13.7	1,115
5	Design of Single-Atom Co–N ₅ Catalytic Site: A Robust Electrocatalyst for CO ₂ Reduction with Nearly 100% CO Selectivity and Remarkable Stability. Journal of the American Chemical Society, 2018, 140, 4218-4221.	13.7	945
6	Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 1944-1948.	13.8	888
7	Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nature Catalysis, 2019, 2, 304-313.	34.4	757
8	Defect Effects on TiO ₂ Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Advanced Materials, 2018, 30, 1705369.	21.0	751
9	Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nature Catalysis, 2018, 1, 781-786.	34.4	746
10	Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nature Nanotechnology, 2018, 13, 856-861.	31.5	741
11	Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nature Communications, 2018, 9, 5422.	12.8	696
12	Uncoordinated Amine Groups of Metal–Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. Journal of the American Chemical Society, 2017, 139, 9419-9422.	13.7	558
13	Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2017, 139, 17269-17272.	13.7	556
14	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	12.8	537
15	Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nature Catalysis, 2021, 4, 407-417.	34.4	517
16	Fe Isolated Single Atoms on S, N Codoped Carbon by Copolymer Pyrolysis Strategy for Highly Efficient Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1800588.	21.0	511
17	Bismuth Single Atoms Resulting from Transformation of Metal–Organic Frameworks and Their Use as Electrocatalysts for CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 16569-16573.	13.7	501
18	Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis, 2019, 2, 495-503.	34.4	464

#	Article	IF	CITATIONS
19	lridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nature Chemistry, 2020, 12, 764-772.	13.6	452
20	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie - International Edition, 2021, 60, 3212-3221.	13.8	445
21	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16086-16090.	13.8	431
22	Tuning defects in oxides at roomÂtemperature by lithium reduction. Nature Communications, 2018, 9, 1302.	12.8	428
23	Single Tungsten Atoms Supported on MOFâ€Derived Nâ€Doped Carbon for Robust Electrochemical Hydrogen Evolution. Advanced Materials, 2018, 30, e1800396.	21.0	427
24	Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nature Nanotechnology, 2020, 15, 390-397.	31.5	420
25	Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2017, 139, 7294-7301.	13.7	354
26	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2020, 59, 1295-1301.	13.8	344
27	Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy and Environmental Science, 2018, 11, 2348-2352.	30.8	336
28	Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12692-12697.	7.1	325
29	A general synthesis approach for amorphous noble metal nanosheets. Nature Communications, 2019, 10, 4855.	12.8	321
30	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie - International Edition, 2018, 57, 14095-14100.	13.8	310
31	Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2017, 129, 7041-7045.	2.0	306
32	Boosting Oxygen Reduction Catalysis with Fe–N ₄ Sites Decorated Porous Carbons toward Fuel Cells. ACS Catalysis, 2019, 9, 2158-2163.	11.2	297
33	A general route <i>via</i> formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy and Environmental Science, 2019, 12, 1317-1325.	30.8	290
34	High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. CheM, 2019, 5, 2099-2110.	11.7	279
35	Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nature Communications, 2018, 9, 2353.	12.8	278
36	Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy and Environmental Science, 2019, 12, 3508-3514.	30.8	278

#	Article	IF	CITATIONS
37	Solid-Diffusion Synthesis of Single-Atom Catalysts Directly from Bulk Metal for Efficient CO2 Reduction. Joule, 2019, 3, 584-594.	24.0	277
38	Directly transforming copper (I) oxide bulk into isolated single-atom copper sites catalyst through gas-transport approach. Nature Communications, 2019, 10, 3734.	12.8	276
39	A Polymer Encapsulation Strategy to Synthesize Porous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Metal Isolatedâ€Singleâ€Atomicâ€Site Catalysts. Advanced Materials, 2018, 30, e1706508.	21.0	266
40	Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nature Communications, 2018, 9, 4958.	12.8	264
41	In Situ Phosphatizing of Triphenylphosphine Encapsulated within Metal–Organic Frameworks to Design Atomic Co ₁ –P ₁ N ₃ Interfacial Structure for Promoting Catalytic Performance. Journal of the American Chemical Society, 2020, 142, 8431-8439.	13.7	259
42	Confined Pyrolysis within Metal–Organic Frameworks To Form Uniform Ru ₃ Clusters for Efficient Oxidation of Alcohols. Journal of the American Chemical Society, 2017, 139, 9795-9798.	13.7	258
43	Metal (Hydr)oxides@Polymer Core–Shell Strategy to Metal Single-Atom Materials. Journal of the American Chemical Society, 2017, 139, 10976-10979.	13.7	257
44	Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nature Communications, 2018, 9, 1002.	12.8	255
45	Engineering Isolated Mn–N ₂ C ₂ Atomic Interface Sites for Efficient Bifunctional Oxygen Reduction and Evolution Reaction. Nano Letters, 2020, 20, 5443-5450.	9.1	249
46	Discovery of main group single Sb–N ₄ active sites for CO ₂ electroreduction to formate with high efficiency. Energy and Environmental Science, 2020, 13, 2856-2863.	30.8	245
47	Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO ₂ . Angewandte Chemie, 2018, 130, 1962-1966.	2.0	244
48	Design of a Singleâ€Atom Indium ^{Î′+} –N ₄ Interface for Efficient Electroreduction of CO ₂ to Formate. Angewandte Chemie - International Edition, 2020, 59, 22465-22469.	13.8	232
49	Atomically Dispersed Copper–Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2017, 56, 16047-16051.	13.8	231
50	Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Science Bulletin, 2018, 63, 1246-1253.	9.0	225
51	Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Science Advances, 2017, 3, e1603068.	10.3	224
52	Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Applied Catalysis B: Environmental, 2019, 240, 234-240.	20.2	224
53	Discovering Partially Charged Single-Atom Pt for Enhanced Anti-Markovnikov Alkene Hydrosilylation. Journal of the American Chemical Society, 2018, 140, 7407-7410.	13.7	218
54	Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Research, 2020, 13, 3082-3087.	10.4	215

#	Article	IF	CITATIONS
55	A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nature Communications, 2018, 9, 3861.	12.8	210
56	A single-atom Fe–N ₄ catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chemical Communications, 2019, 55, 159-162.	4.1	209
57	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie - International Edition, 2018, 57, 9495-9500.	13.8	205
58	Temperature-Controlled Selectivity of Hydrogenation and Hydrodeoxygenation in the Conversion of Biomass Molecule by the Ru ₁ /mpg-C ₃ N ₄ Catalyst. Journal of the American Chemical Society, 2018, 140, 11161-11164.	13.7	199
59	Single-Atom Co–N ₄ Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. Journal of the American Chemical Society, 2020, 142, 16861-16867.	13.7	184
60	Gramâ€Scale Synthesis of Highâ€Loading Singleâ€Atomicâ€Site Fe Catalysts for Effective Epoxidation of Styrene. Advanced Materials, 2020, 32, e2000896.	21.0	181
61	Engineering of Coordination Environment and Multiscale Structure in Single-Site Copper Catalyst for Superior Electrocatalytic Oxygen Reduction. Nano Letters, 2020, 20, 6206-6214.	9.1	178
62	Cactus-like NiCo2S4@NiFe LDH hollow spheres as an effective oxygen bifunctional electrocatalyst in alkaline solution. Applied Catalysis B: Environmental, 2021, 286, 119869.	20.2	176
63	Isolated Ni Atoms Dispersed on Ru Nanosheets: High-Performance Electrocatalysts toward Hydrogen Oxidation Reaction. Nano Letters, 2020, 20, 3442-3448.	9.1	172
64	Isolated Fe and Co dual active sites on nitrogen-doped carbon for a highly efficient oxygen reduction reaction. Chemical Communications, 2018, 54, 4274-4277.	4.1	166
65	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2018, 57, 11262-11266.	13.8	165
66	Atomically Dispersed Ruthenium Species Inside Metal–Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. Angewandte Chemie - International Edition, 2019, 58, 4271-4275.	13.8	162
67	Hierarchical Fe-doped NiO x nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction. Nano Energy, 2017, 38, 167-174.	16.0	160
68	Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nature Communications, 2021, 12, 3181.	12.8	156
69	Single-atom Ni-N4 provides a robust cellular NO sensor. Nature Communications, 2020, 11, 3188.	12.8	153
70	Mesoporous Nitrogenâ€Doped Carbonâ€Nanosphereâ€Supported Isolated Singleâ€Atom Pd Catalyst for Highly Efficient Semihydrogenation of Acetylene. Advanced Materials, 2019, 31, e1901024.	21.0	146
71	MOFâ€Confined Subâ€2 nm Atomically Ordered Intermetallic PdZn Nanoparticles as Highâ€Performance Catalysts for Selective Hydrogenation of Acetylene. Advanced Materials, 2018, 30, e1801878.	21.0	133
72	Atomically Dispersed Ru on Ultrathin Pd Nanoribbons. Journal of the American Chemical Society, 2016, 138, 13850-13853.	13.7	132

#	Article	IF	CITATIONS
73	Simultaneous oxidative and reductive reactions in one system by atomic design. Nature Catalysis, 2021, 4, 134-143.	34.4	132
74	Identification of Fenton-like active Cu sites by heteroatom modulation of electronic density. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	132
75	N-Bridged Co–N–Ni: new bimetallic sites for promoting electrochemical CO ₂ reduction. Energy and Environmental Science, 2021, 14, 3019-3028.	30.8	128
76	One-Pot Pyrolysis to N-Doped Graphene with High-Density Pt Single Atomic Sites as Heterogeneous Catalyst for Alkene Hydrosilylation. ACS Catalysis, 2018, 8, 10004-10011.	11.2	121
77	Isolating contiguous Pt atoms and forming Pt-Zn intermetallic nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nature Communications, 2019, 10, 3787.	12.8	119
78	Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Research, 2018, 11, 6260-6269.	10.4	118
79	Engineering a metal–organic framework derived Mn–N ₄ –C _x S _y atomic interface for highly efficient oxygen reduction reaction. Chemical Science, 2020, 11, 5994-5999.	7.4	113
80	Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nature Communications, 2022, 13, 1322.	12.8	113
81	Singleâ€Site Au ^I Catalyst for Silane Oxidation with Water. Advanced Materials, 2018, 30, 1704720.	21.0	112
82	Scaleâ€Up Biomass Pathway to Cobalt Single‣ite Catalysts Anchored on Nâ€Doped Porous Carbon Nanobelt with Ultrahigh Surface Area. Advanced Functional Materials, 2018, 28, 1802167.	14.9	112
83	Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd–Mo catalyst. Nature Communications, 2017, 8, 591.	12.8	110
84	Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts. Chemical Science, 2020, 11, 786-790.	7.4	110
85	Two-Step Carbothermal Welding To Access Atomically Dispersed Pd ₁ on Three-Dimensional Zirconia Nanonet for Direct Indole Synthesis. Journal of the American Chemical Society, 2019, 141, 10590-10594.	13.7	108
86	Catalytic degradation of recalcitrant pollutants by Fenton-like process using polyacrylonitrile-supported iron (II) phthalocyanine nanofibers: Intermediates and pathway. Water Research, 2016, 93, 296-305.	11.3	106
87	Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene Frameworks for Enhanced Oxygen Reduction. Angewandte Chemie - International Edition, 2020, 59, 20465-20469.	13.8	104
88	Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Science China Materials, 2021, 64, 642-650.	6.3	98
89	Solvothermal Synthesis of Ternary Cu ₂ MoS ₄ Nanosheets: Structural Characterization at the Atomic Level. Small, 2014, 10, 4637-4644.	10.0	97
90	Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nature Communications, 2021, 12, 303.	12.8	97

#	Article	IF	CITATIONS
91	Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4â€Nitrostyrene by Strain Regulation. Angewandte Chemie - International Edition, 2017, 56, 11971-11975.	13.8	93
92	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie - International Edition, 2018, 57, 4642-4646.	13.8	93
93	Regulating the Catalytic Performance of Single-Atomic-Site Ir Catalyst for Biomass Conversion by Metal–Support Interactions. ACS Catalysis, 2019, 9, 5223-5230.	11.2	87
94	Tuning Polarity of Cu-O Bond in Heterogeneous Cu Catalyst to Promote Additive-free Hydroboration of Alkynes. CheM, 2020, 6, 725-737.	11.7	87
95	Efficient Plasmonic Au/CdSe Nanodumbbell for Photoelectrochemical Hydrogen Generation beyond Visible Region. Advanced Energy Materials, 2019, 9, 1803889.	19.5	85
96	MnN ₄ Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery. Advanced Energy Materials, 2021, 11, 2002753.	19.5	83
97	Rational Design of Single Molybdenum Atoms Anchored on Nâ€Doped Carbon for Effective Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 16302-16306.	2.0	82
98	Cation/Anion Exchange Reactions toward the Syntheses of Upgraded Nanostructures: Principles and Applications. Matter, 2020, 2, 554-586.	10.0	81
99	In Situ Implanting of Single Tungsten Sites into Defective UiOâ€66(Zr) by Solventâ€Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angewandte Chemie - International Edition, 2021, 60, 20318-20324.	13.8	81
100	Single-Atom Au ^I –N ₃ Site for Acetylene Hydrochlorination Reaction. ACS Catalysis, 2020, 10, 1865-1870.	11.2	76
101	Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Science China Materials, 2020, 63, 972-981.	6.3	74
102	Room-Temperature Synthesis of Single Iron Site by Electrofiltration for Photoreduction of CO ₂ into Tunable Syngas. ACS Nano, 2020, 14, 6164-6172.	14.6	71
103	The consortium of heterogeneous cobalt phthalocyanine catalyst and bicarbonate ion as a novel platform for contaminants elimination based on peroxymonosulfate activation. Journal of Hazardous Materials, 2016, 301, 214-221.	12.4	66
104	Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Research, 2020, 13, 947-951.	10.4	65
105	Self-floating graphitic carbon nitride/zinc phthalocyanine nanofibers for photocatalytic degradation of contaminants. Journal of Hazardous Materials, 2016, 317, 17-26.	12.4	64
106	Silkâ€Derived 2D Porous Carbon Nanosheets with Atomicallyâ€Dispersed Feâ€N <i>_x</i> Sites for Highly Efficient Oxygen Reaction Catalysts. Small, 2019, 15, e1804966.	10.0	64
107	Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Research, 2022, 15, 2895-2904.	10.4	64
108	In-situ polymerization induced atomically dispersed manganese sites as cocatalyst for CO2 photoreduction into synthesis gas. Nano Energy, 2020, 76, 105059.	16.0	60

#	Article	IF	CITATIONS
109	Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angewandte Chemie, 2020, 132, 1311-1317.	2.0	59
110	Factors Influencing the Performance of Copper-Bearing Catalysts in the CO ₂ Reduction System. ACS Energy Letters, 2021, 6, 3992-4022.	17.4	58
111	Construction of MnO ₂ Artificial Leaf with Atomic Thickness as Highly Stable Battery Anodes. Advanced Materials, 2020, 32, e1906582.	21.0	57
112	Graphitic Carbon Nitride from Burial to Re-emergence on Polyethylene Terephthalate Nanofibers as an Easily Recycled Photocatalyst for Degrading Antibiotics under Solar Irradiation. ACS Applied Materials & Interfaces, 2016, 8, 25962-25970.	8.0	56
113	Ultrafast Rechargeable Aqueous Zincâ€lon Batteries Based on Stable Radical Chemistry. Advanced Functional Materials, 2021, 31, 2102011.	14.9	56
114	Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification. Nano Energy, 2020, 73, 104784.	16.0	54
115	Atomically Dispersed Copper–Platinum Dual Sites Alloyed with Palladium Nanorings Catalyze the Hydrogen Evolution Reaction. Angewandte Chemie, 2017, 129, 16263-16267.	2.0	53
116	Highly Selective Photoreduction of CO ₂ with Suppressing H ₂ Evolution by Plasmonic Au/CdSe–Cu ₂ O Hierarchical Nanostructures under Visible Light. Small, 2020, 16, e2000426.	10.0	53
117	Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Research, 2021, 14, 2790-2796.	10.4	53
118	Construction of Dualâ€Activeâ€5ite Copper Catalyst Containing both CuN ₃ and CuN ₄ Sites. Small, 2021, 17, e2006834.	10.0	52
119	Electrodeposition of polypyrrole on carbon nanotube-coated cotton fabrics for all-solid flexible supercapacitor electrodes. RSC Advances, 2016, 6, 13359-13364.	3.6	51
120	Bimetallic Ru–Co Clusters Derived from a Confined Alloying Process within Zeolite–Imidazolate Frameworks for Efficient NH ₃ Decomposition and Synthesis. ACS Applied Materials & Interfaces, 2017, 9, 39450-39455.	8.0	51
121	Single atom catalysts by atomic diffusion strategy. Nano Research, 2021, 14, 4398-4416.	10.4	51
122	Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Research, 2021, 14, 998-1003.	10.4	50
123	Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the "size shackles― Nano Research, 2018, 11, 4774-4785.	10.4	49
124	Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Research, 2022, 15, 6054-6061.	10.4	47
125	Atomic regulation of metal–organic framework derived carbon-based single-atom catalysts for the electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2021, 9, 23382-23418.	10.3	46
126	Single iron atoms coordinated to g-C ₃ N ₄ on hierarchical porous N-doped carbon polyhedra as a high-performance electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2020, 56, 798-801.	4.1	45

#	Article	IF	CITATIONS
127	Engineering Ag–N <i>_x</i> Single-Atom Sites on Porous Concave N-Doped Carbon for Boosting CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2021, 13, 17736-17744.	8.0	45
128	Key role of activated carbon fibers in enhanced decomposition of pollutants using heterogeneous cobalt/peroxymonosulfate system. Journal of Chemical Technology and Biotechnology, 2016, 91, 1257-1265.	3.2	44
129	Mesoporous S doped Fe–N–C materials as highly active oxygen reduction reaction catalyst. Chemical Communications, 2018, 54, 12073-12076.	4.1	44
130	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie, 2021, 133, 3249-3258.	2.0	44
131	Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Research, 2022, 15, 1753-1778.	10.4	44
132	Metal single-atom catalysts for selective hydrogenation of unsaturated bonds. Journal of Materials Chemistry A, 2021, 9, 5296-5319.	10.3	43
133	Single-atom Sn-Zn pairs in CuO catalyst promote dimethyldichlorosilane synthesis. National Science Review, 2020, 7, 600-608.	9.5	42
134	Inâ€Situ Thermal Atomization To Convert Supported Nickel Nanoparticles into Surfaceâ€Bound Nickel Singleâ€Atom Catalysts. Angewandte Chemie, 2018, 130, 14291-14296.	2.0	41
135	Evolution of Hollow CuInS ₂ Nanododecahedrons via Kirkendall Effect Driven by Cation Exchange for Efficient Solar Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 27170-27177.	8.0	40
136	Electrochemical conversion of bulk platinum into platinum single-atom sites for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 10755-10760.	10.3	40
137	Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance. Nano Research, 2021, 14, 4512-4519.	10.4	40
138	Au@HgxCd1-xTe core@shell nanorods by sequential aqueous cation exchange for near-infrared photodetectors. Nano Energy, 2019, 57, 57-65.	16.0	38
139	Research progress of asymmetrically coordinated single-atom catalysts for electrocatalytic reactions. Journal of Materials Chemistry A, 2022, 10, 14732-14746.	10.3	38
140	Self-assembly of ultrathin Cu ₂ MoS ₄ nanobelts for highly efficient visible light-driven degradation of methyl orange. Nanoscale, 2015, 7, 17998-18003.	5.6	36
141	Dynamic evolution of isolated Ru–FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 22607-22612.	10.3	36
142	A single-atom Cu–N ₂ catalyst eliminates oxygen interference for electrochemical sensing of hydrogen peroxide in a living animal brain. Chemical Science, 2021, 12, 15045-15053.	7.4	36
143	A highly accessible copper single-atom catalyst for wound antibacterial application. Nano Research, 2021, 14, 4808-4813.	10.4	35
144	2D MOF induced accessible and exclusive Co single sites for an efficient <i>O</i> -silylation of alcohols with silanes. Chemical Communications, 2019, 55, 6563-6566.	4.1	34

#	Article	IF	CITATIONS
145	Structure–Property Evolution of Poly(ethylene terephthalate) Fibers in Industrialized Process under Complex Coupling of Stress and Temperature Field. Macromolecules, 2019, 52, 565-574.	4.8	34
146	Selective Hydrogenation on a Highly Active Single-Atom Catalyst of Palladium Dispersed on Ceria Nanorods by Defect Engineering. ACS Applied Materials & Interfaces, 2020, 12, 57569-57577.	8.0	34
147	Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. ACS Catalysis, 2021, 11, 2669-2675.	11.2	34
148	Oxidative desulfurization of dibenzothiophene with molecular oxygen catalyzed by carbon fiber-supported iron phthalocyanine. Reaction Kinetics, Mechanisms and Catalysis, 2014, 111, 535-547.	1.7	32
149	Visible-light responsive electrospun nanofibers based on polyacrylonitrile-dispersed graphitic carbon nitride. RSC Advances, 2015, 5, 86505-86512.	3.6	32
150	Efficient and Robust Hydrogen Evolution: Phosphorus Nitride Imide Nanotubes as Supports for Anchoring Single Ruthenium Sites. Angewandte Chemie, 2018, 130, 9639-9644.	2.0	31
151	Direct Synthesis of Atomically Dispersed Palladium Atoms Supported on Graphitic Carbon Nitride for Efficient Selective Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2020, 12, 54146-54154.	8.0	31
152	Highly Active and Stable Palladium Single-Atom Catalyst Achieved by a Thermal Atomization Strategy on an SBA-15 Molecular Sieve for Semi-Hydrogenation Reactions. ACS Applied Materials & Interfaces, 2021, 13, 2530-2537.	8.0	31
153	Interfacial peroxidase-like catalytic activity of surface-immobilized cobalt phthalocyanine on multiwall carbon nanotubes. RSC Advances, 2015, 5, 9374-9380.	3.6	30
154	The coupling of hemin with persistent free radicals induces a nonradical mechanism for oxidation of pollutants. Chemical Communications, 2016, 52, 9566-9569.	4.1	30
155	Revealing the Active Species for Aerobic Alcohol Oxidation by Using Uniform Supported Palladium Catalysts. Angewandte Chemie, 2018, 130, 4732-4736.	2.0	29
156	Semiconductor Nanocrystal Engineering by Applying Thiol―and Solventâ€Coordinated Cation Exchange Kinetics. Angewandte Chemie - International Edition, 2019, 58, 4852-4857.	13.8	29
157	Design of a Singleâ€Atom Indium δ+ –N 4 Interface for Efficient Electroreduction of CO 2 to Formate. Angewandte Chemie, 2020, 132, 22651-22655.	2.0	29
158	Theoretical Predictions, Experimental Modulation Strategies, and Applications of MXene‧upported Atomically Dispersed Metal Sites. Small, 2022, 18, e2105883.	10.0	28
159	Electrocatalytic acidic oxygen evolution reaction: From nanocrystals to single atoms. Aggregate, 2021, 2, e106.	9.9	27
160	Colored TiO2 composites embedded on fabrics as photocatalysts: Decontamination of formaldehyde and deactivation of bacteria in water and air. Chemical Engineering Journal, 2019, 375, 121949.	12.7	26
161	Raman scattering of single crystal Cu2MoS4 nanosheet. AIP Advances, 2015, 5, 037141.	1.3	25
162	Atomically Dispersed Ruthenium Species Inside Metal–Organic Frameworks: Combining the High Activity of Atomic Sites and the Molecular Sieving Effect of MOFs. Angewandte Chemie, 2019, 131, 4315-4319.	2.0	25

#	Article	IF	CITATIONS
163	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie, 2018, 130, 11432-11436.	2.0	24
164	RuO2 clusters derived from bulk SrRuO3: Robust catalyst for oxygen evolution reaction in acid. Nano Research, 2022, 15, 1959-1965.	10.4	23
165	Cube-like Cu2MoS4 photocatalysts for visible light-driven degradation of methyl orange. AIP Advances, 2015, 5, 077130.	1.3	22
166	Copper-based single-atom alloys for heterogeneous catalysis. Chemical Communications, 2021, 57, 2710-2723.	4.1	22
167	Free Channel Formation around Graphitic Carbon Nitride Embedded in Porous Polyethylene Terephthalate Nanofibers with Excellent Reusability for Eliminating Antibiotics under Solar Irradiation. Industrial & Engineering Chemistry Research, 2017, 56, 11151-11160.	3.7	21
168	Compressive surface strained atomic-layer Cu2O on Cu@Ag nanoparticles. Nano Research, 2019, 12, 1187-1192.	10.4	21
169	Facile synthesis of CoNi _x nanoparticles embedded in nitrogen–carbon frameworks for highly efficient electrocatalytic oxygen evolution. Chemical Communications, 2017, 53, 12177-12180.	4.1	20
170	Porous platinum–silver bimetallic alloys: surface composition and strain tunability toward enhanced electrocatalysis. Nanoscale, 2018, 10, 21703-21711.	5.6	20
171	From Indiumâ€Doped Ag ₂ S to AgInS ₂ Nanocrystals: Lowâ€Temperature In Situ Conversion of Colloidal Ag ₂ S Nanoparticles and Their NIR Fluorescence. Chemistry - A European Journal, 2018, 24, 13676-13680.	3.3	20
172	Optimized MoP with Pseudo-Single-Atom Tungsten for Efficient Hydrogen Electrocatalysis. Chemistry of Materials, 2021, 33, 3639-3649.	6.7	20
173	Silver based single atom catalyst with heteroatom coordination environment as high performance oxygen reduction reaction catalyst. Nano Research, 2022, 15, 7968-7975.	10.4	20
174	Electrocatalytic degradation of organic contaminants using carbon fiber coupled with cobalt phthalocyanine electrode. Journal of Applied Electrochemistry, 2016, 46, 583-592.	2.9	19
175	Phosphine ligand-mediated kinetics manipulation of aqueous cation exchange: a case study on the synthesis of Au@SnS _x core–shell nanocrystals for photoelectrochemical water splitting. Chemical Communications, 2018, 54, 9993-9996.	4.1	19
176	Transforming cobalt hydroxide nanowires into single atom site catalysts. Nano Energy, 2021, 83, 105799.	16.0	19
177	Insights into the generation of high-valent copper-oxo species in ligand-modulated catalytic system for oxidizing organic pollutants. Chemical Engineering Journal, 2016, 304, 1000-1008.	12.7	18
178	Unique Cation Exchange in Nanocrystal Matrix via Surface Vacancy Engineering Overcoming Chemical Kinetic Energy Barriers. CheM, 2020, 6, 3086-3099.	11.7	18
179	High-Performance Quantum Dots with Synergistic Doping and Oxide Shell Protection Synthesized by Cation Exchange Conversion of Ternary-Composition Nanoparticles. Journal of Physical Chemistry Letters, 2019, 10, 2606-2615.	4.6	17
180	Atomic-dispersed platinum anchored on porous alumina sheets as an efficient catalyst for diboration of alkynes. Chemical Communications, 2020, 56, 3127-3130.	4.1	17

#	Article	IF	CITATIONS
181	Hollow anisotropic semiconductor nanoprisms with highly crystalline frameworks for high-efficiency photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 8061-8072.	10.3	16
182	Negative Pressure Pyrolysis Induced Highly Accessible Single Sites Dispersed on 3D Graphene Frameworks for Enhanced Oxygen Reduction. Angewandte Chemie, 2020, 132, 20645-20649.	2.0	16
183	Electron-rich isolated Pt active sites in ultrafine PtFe3 intermetallic catalyst for efficient alkene hydrosilylation. Journal of Catalysis, 2021, 396, 351-359.	6.2	16
184	Single-Atom Ru on Al ₂ O ₃ for Highly Active and Selective 1,2-Dichloroethane Catalytic Degradation. ACS Applied Materials & Interfaces, 2021, 13, 53683-53690.	8.0	16
185	Construction of interconnected NiO/CoFe alloy nanosheets for overall water splitting. Renewable Energy, 2022, 194, 459-468.	8.9	15
186	Hydroxyl Radical-Dominated Catalytic Oxidation in Neutral Condition by Axially Coordinated Iron Phthalocyanine on Mercapto-Functionalized Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2017, 56, 2899-2907.	3.7	14
187	Atomically dispersed Ru in Pt ₃ Sn intermetallic alloy as an efficient methanol oxidation electrocatalyst. Chemical Communications, 2021, 57, 2164-2167.	4.1	14
188	Synergistic effects of silica nanoparticles and reactive compatibilizer on the compatibilization of polystyrene/polyamide 6 blends. Polymer Engineering and Science, 2017, 57, 1301-1310.	3.1	13
189	Crystallization and Thermal Behaviors of Poly(ethylene terephthalate)/Bisphenols Complexes through Melt Post-Polycondensation. Polymers, 2020, 12, 3053.	4.5	13
190	Confined crystallization, melting behavior and morphology in PEGâ€ <i>b</i> â€PLA diblock copolymers: Amorphous versus crystalline PLA. Journal of Polymer Science, 2020, 58, 455-465.	3.8	13
191	Rational Control of the Selectivity of a Ruthenium Catalyst for Hydrogenation of 4â€Nitrostyrene by Strain Regulation. Angewandte Chemie, 2017, 129, 12133-12137.	2.0	12
192	PtAl truncated octahedron nanocrystals for improved formic acid electrooxidation. Chemical Communications, 2018, 54, 3951-3954.	4.1	12
193	Effect of Protective Agents upon the Catalytic Property of Platinum Nanocrystals. ChemCatChem, 2018, 10, 2433-2441.	3.7	12
194	Electrodeposition of polypyrrole on He plasma etched carbon nanotube films for electrodes of flexible all-solid-state supercapacitor. Journal of Solid State Electrochemistry, 2019, 23, 1553-1562.	2.5	12
195	Phase and interface engineering of nickel carbide nanobranches for efficient hydrogen oxidation catalysis. Journal of Materials Chemistry A, 2021, 9, 26323-26329.	10.3	12
196	High-Valent Iron-Oxo Complexes as Dominant Species to Eliminate Pharmaceuticals and Chloride-Containing Intermediates by the Activation of Peroxymonosulfate Under Visible Irradiation. Catalysis Letters, 2020, 150, 1355-1367.	2.6	11
197	Controllable drilling by corrosive Cu1Ox to access highly accessible single-site catalysts for bacterial disinfection. Applied Catalysis B: Environmental, 2021, 293, 120228.	20.2	11
198	Surface Molecular Encapsulation with Cyclodextrin in Promoting the Activity and Stability of Fe Singleâ€Atom Catalyst for Oxygen Reduction Reaction. Energy and Environmental Materials, 2023, 6, .	12.8	11

#	Article	IF	CITATIONS
199	Enhanced catalytic decoloration of Rhodamine B based on 4â€aminopyridine iron coupled with cellulose fibers. Journal of Chemical Technology and Biotechnology, 2015, 90, 1144-1151.	3.2	10
200	Edge-Contact Geometry and Anion-Deficit Construction for Activating Ultrathin MoS ₂ on W ₁₇ O ₄₇ in the Hydrogen Evolution Reaction. Inorganic Chemistry, 2019, 58, 11241-11247.	4.0	10
201	Micro-scale 2D quasi-nanosheets formed by 0D nanocrystals: from single to multicomponent building blocks. Science China Materials, 2020, 63, 1265-1271.	6.3	10
202	Artificial light-harvesting 2D photosynthetic systems with iron phthalocyanine/graphitic carbon nitride composites for highly efficient CO ₂ reduction. Catalysis Science and Technology, 2021, 11, 5952-5961.	4.1	10
203	Atomically dispersed Pd catalysts promote the oxygen evolution reaction in acidic media. Chemical Communications, 2021, 57, 11561-11564.	4.1	10
204	Flexible Electron-Rich Ion Channels Enable Ultrafast and Stable Aqueous Zinc-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 54096-54105.	8.0	10
205	Atomic-Scale Tailoring and Molecular-Level Tracking of Oxygen-Containing Tungsten Single-Atom Catalysts with Enhanced Singlet Oxygen Generation. ACS Applied Materials & Interfaces, 2021, 13, 37142-37151.	8.0	9
206	Semiconductor Nanocrystal Engineering by Applying Thiol―and Solventâ€Coordinated Cation Exchange Kinetics. Angewandte Chemie, 2019, 131, 4906-4911.	2.0	8
207	A rational design of an efficient counter electrode with the Co/Co ₁ P ₁ N ₃ atomic interface for promoting catalytic performance. Materials Chemistry Frontiers, 2021, 5, 3085-3092.	5.9	8
208	Abiotic degradation behavior of polyacrylonitrile-based material filled with a composite of TiO2 and g-C3N4 under solar illumination. Chemosphere, 2022, 299, 134375.	8.2	8
209	Constructing the separation pathway for photo-generated carriers by diatomic sites decorated on MIL-53-NH2(Al) for enhanced photocatalytic performance. Nano Research, 0, , .	10.4	8
210	Enhanced removal of acid red 1 with large amounts of dyeing auxiliaries: the pivotal role of cellulose support. Cellulose, 2014, 21, 2073-2087.	4.9	6
211	Innenrücktitelbild: Isolated Single Iron Atoms Anchored on Nâ€Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction (Angew. Chem. 24/2017). Angewandte Chemie, 2017, 129, 7107-7107.	2.0	6
212	Numerical simulation of the behavior of highâ€viscosity fluids falling film flow down the vertical wavy wall. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 97-109.	1.5	6
213	Revealing the role of graphene in enhancing the catalytic performance of phthalocyanine immobilized graphene/bacterial cellulose nanocomposite. Cellulose, 2019, 26, 7863-7875.	4.9	6
214	Continuous postâ€polycondensation of highâ€viscosity poly(ethylene terephthalate) in the molten state. Journal of Applied Polymer Science, 2019, 136, 47484.	2.6	6
215	Fabrication of a wrinkled structure made of wearable polyacrylonitrile/polyurethane composite fibers with elastic sensing properties suitable for human movement detection. Polymer Composites, 2020, 41, 3491-3500.	4.6	6
216	Film reaction kinetics for melt postpolycondensation of poly(ethylene terephthalate). Journal of Applied Polymer Science, 2020, 137, 48988.	2.6	6

#	Article	IF	CITATIONS
217	Degradation of carbamazepine by MWCNTs-promoted generation of high-valent iron-oxo species in a mild system with O-bridged iron perfluorophthalocyanine dimers. Journal of Environmental Sciences, 2021, 99, 260-266.	6.1	6
218	Solar-driven zinc-doped graphitic carbon nitride photocatalytic fibre for simultaneous removal of hexavalent chromium and pharmaceuticals. Environmental Technology (United Kingdom), 2022, 43, 2569-2580.	2.2	6
219	High-valent iron-oxo species on pyridine-containing MWCNTs generated in a solar-induced H2O2 activation system for the removal of antimicrobials. Chemosphere, 2021, 273, 129545.	8.2	6
220	Structure and properties of gelâ€spun ultraâ€high molecular weight polyethylene fibers obtained from industrial production line. Journal of Applied Polymer Science, 2021, 138, 51317.	2.6	6
221	In Situ Implanting of Single Tungsten Sites into Defective UiOâ€66(Zr) by Solventâ€Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angewandte Chemie, 2021, 133, 20481-20487.	2.0	6
222	Alkyne Semihydrogenation over Pd Nanoparticles Embedded in N,S-Doped Carbon Nanosheets. ACS Applied Nano Materials, 2021, 4, 9052-9059.	5.0	6
223	Carbon-Based Oxamate Cobalt(III) Complexes as Bioenzyme Mimics for Contaminant Elimination in High Backgrounds of Complicated Constituents. Materials, 2017, 10, 1169.	2.9	5
224	Nearâ€Infrared Luminescent Ternary Ag ₃ SbS ₃ Quantum Dots by in situ Conversion of Ag Nanocrystals with Sb(C ₉ H ₁₉ COOS) ₃ . Chemistry - A European Journal, 2018, 24, 18643-18647.	3.3	5
225	Bottom-up pore-generation strategy modulated active nitrogen species for oxygen reduction reaction. Materials Chemistry Frontiers, 2021, 5, 2684-2693.	5.9	4
226	Reaction kinetics of melt postâ€polycondensation process for polycarbonate in film state. Journal of Applied Polymer Science, 2022, 139, 51731.	2.6	4
227	Construction of Synergistic Co and Cu Diatomic Sites for Enhanced Higher Alcohol Synthesis. CCS Chemistry, 2023, 5, 851-864.	7.8	4
228	Generation of reactive cobalt oxo oxamate radical species for biomimetic oxidation of contaminants. RSC Advances, 2017, 7, 42875-42883.	3.6	3
229	Interpenetratingâ€Syncretic Microâ€Nano Hierarchy Fibers for Effective Fine Particle Capture. Advanced Engineering Materials, 2019, 21, 1801361.	3.5	3
230	Two-dimensional CdX (X = Se, Te) nanosheets: controlled synthesis and their photoluminescence properties. Journal of Materials Chemistry C, 2019, 7, 13849-13858.	5.5	3
231	Confined crystallization and melting behaviors of poly(ethylene glycol) endâ€functionalized by hydrogen bonding groups: Effect of contents for functional units. Polymer Crystallization, 2020, 3, e10158.	0.8	3
232	Hydrodynamics and mixing performance in a continuous miniature conical counter-rotating twin-screw extruder. International Journal of Chemical Reactor Engineering, 2022, .	1.1	3
233	Catalytic degradation of sulfaquinoxalinum by polyester/poly-4-vinylpyridine nanofibers-supported iron phthalocyanine. Environmental Science and Pollution Research, 2018, 25, 5902-5910.	5.3	2
234	Biomimetic polydopamine catalyst with redox activity for oxygen-promoted H ₂ production <i>via</i> aqueous formaldehyde reforming. Sustainable Energy and Fuels, 2021, 5, 4575-4579.	4.9	2

#	Article	IF	CITATIONS
235	A general strategy to prepare atomically dispersed biomimetic catalysts based on host–guest chemistry. Chemical Communications, 2021, 57, 1895-1898.	4.1	2
236	Efficient peroxymonosulfate activation by N-rich pyridyl-iron phthalocyanine derivative for the elimination of pharmaceutical contaminants under solar irradiation. Chemosphere, 2022, 299, 134464.	8.2	2
237	Saltâ€Induced Changes in Solâ€toâ€Gel Transition and Structure of Stereocomplexable Poly(lactic) Tj ETQq1 1 ().784314 2.2	rgBT /Overloc
238	Oxygen Reduction Reaction: MnN ₄ Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery (Adv. Energy Mater. 6/2021). Advanced Energy Materials, 2021, 11, 2170025.	19.5	0
239	Frontispiece: In Situ Implanting of Single Tungsten Sites into Defective UiOâ€66(Zr) by Solventâ€Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
240	Frontispiz: In Situ Implanting of Single Tungsten Sites into Defective UiOâ€66(Zr) by Solventâ€Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angewandte Chemie, 2021, 133, .	2.0	0
241	Effects of physical aging on the selfâ€healing, shape memory, and crystallization behaviors of hydrogenâ€bonded supramolecular polymers. Journal of Polymer Science. 0. , .	3.8	0