
Daniel J. Conley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2235863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Controlling Eutrophication: Nitrogen and Phosphorus. Science, 2009, 323, 1014-1015.	12.6	2,998
2	Declining oxygen in the global ocean and coastal waters. Science, 2018, 359, .	12.6	1,707
3	Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment, 2011, 9, 18-26.	4.0	656
4	Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years. Science, 2008, 320, 765-768.	12.6	553
5	Return to Neverland: Shifting Baselines Affect Eutrophication Restoration Targets. Estuaries and Coasts, 2009, 32, 29-36.	2.2	523
6	Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5628-5633.	7.1	496
7	Hypoxia-Related Processes in the Baltic Sea. Environmental Science & Technology, 2009, 43, 3412-3420.	10.0	470
8	Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles, 2002, 16, 68-1-68-8.	4.9	455
9	Internal Ecosystem Feedbacks Enhance Nitrogen-fixing Cyanobacteria Blooms and Complicate Management in the Baltic Sea. Ambio, 2007, 36, 186-194.	5.5	382
10	Hypoxia in the Baltic Sea and Basin-Scale Changes in Phosphorus Biogeochemistry. Environmental Science & Technology, 2002, 36, 5315-5320.	10.0	372
11	Hypoxia Is Increasing in the Coastal Zone of the Baltic Sea. Environmental Science & Technology, 2011, 45, 6777-6783.	10.0	364
12	Silicon Retention in River Basins: Far-reaching Effects on Biogeochemistry and Aquatic Food Webs in Coastal Marine Environments. Ambio, 2000, 29, 45-50.	5.5	301
13	Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth-Science Reviews, 2008, 91, 77-92.	9.1	286
14	Nutrient pressures and ecological responses to nutrient loading reductions in Danish streams, lakes and coastal waters. Journal of Hydrology, 2005, 304, 274-288.	5.4	264
15	Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry, 2006, 80, 89-108.	3.5	259
16	Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biological Reviews, 2017, 92, 135-149.	10.4	259
17	Biogeochemical nutrient cycles and nutrient management strategies. , 1999, 410, 87-96.		256
18	LONGâ€TERM CHANGES AND IMPACTS OF HYPOXIA IN DANISH COASTAL WATERS. Ecological Applications, 2007, 17, S165.	3.8	256

#	Article	IF	CITATIONS
19	Eutrophication-Driven Deoxygenation in the Coastal Ocean. Oceanography, 2014, 27, 172-183.	1.0	245
20	Scales of Nutrient-Limited Phytoplankton Productivity in Chesapeake Bay. Estuaries and Coasts, 1996, 19, 371.	1.7	241
21	Comparison of hypoxia among four river-dominated ocean margins: The Changjiang (Yangtze), Mississippi, Pearl, and Rhône rivers. Continental Shelf Research, 2008, 28, 1527-1537.	1.8	227
22	Riverine contribution of biogenic silica to the oceanic silica budget. Limnology and Oceanography, 1997, 42, 774-777.	3.1	216
23	Ecosystem thresholds with hypoxia. Hydrobiologia, 2009, 629, 21-29.	2.0	214
24	Differences in silica content between marine and freshwater diatoms. Limnology and Oceanography, 1989, 34, 205-212.	3.1	204
25	Historical land use change has lowered terrestrial silica mobilization. Nature Communications, 2010, 1, 129.	12.8	189
26	The continental Si cycle and its impact on the ocean Si isotope budget. Chemical Geology, 2016, 425, 12-36.	3.3	188
27	An interlaboratory comparison for the measurement of biogenic silica in sediments. Marine Chemistry, 1998, 63, 39-48.	2.3	181
28	Coastal eutrophication and trend reversal: A Danish case study. Limnology and Oceanography, 2006, 51, 398-408.	3.1	180
29	Characteristics of Danish Estuaries. Estuaries and Coasts, 2000, 23, 820.	1.7	170
30	Silica: an essential nutrient in wetland biogeochemistry. Frontiers in Ecology and the Environment, 2009, 7, 88-94.	4.0	162
31	Hypoxia in the Baltic Sea: Biogeochemical Cycles, Benthic Fauna, and Management. Ambio, 2014, 43, 26-36.	5.5	158
32	The Global Biogeochemical Silicon Cycle. Silicon, 2009, 1, 207-213.	3.3	153
33	REGIME SHIFT IN A COASTAL MARINE ECOSYSTEM. , 2008, 18, 497-510.		148
34	A welcome can of worms? Hypoxia mitigation by an invasive species. Global Change Biology, 2012, 18, 422-434.	9.5	148
35	Emerging understanding of the ecosystem silica filter. Biogeochemistry, 2012, 107, 9-18.	3.5	147
36	Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. European Journal of Soil Science, 2007, 58, 1446-1459.	3.9	136

#	Article	IF	CITATIONS
37	Palaeoecology, reference conditions and classification of ecological status: the EU Water Framework Directive in practice. Marine Pollution Bulletin, 2004, 49, 283-290.	5.0	118
38	Efficiency of the coastal filter: Nitrogen and phosphorus removal in the Baltic Sea. Limnology and Oceanography, 2017, 62, S222.	3.1	118
39	Transient variations in phytoplankton productivity at the JGOFS Bermuda time series station. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40, 903-924.	1.4	117
40	A Sediment Chronology of the Eutrophication of Chesapeake Bay. Estuaries and Coasts, 1996, 19, 488.	1.7	115
41	Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. Global Change Biology, 2008, 14, 2548-2554.	9.5	115
42	The transport and retention of dissolved silicate by rivers in Sweden and Finland. Limnology and Oceanography, 2000, 45, 1850-1853.	3.1	109
43	Hypoxia Sustains Cyanobacteria Blooms in the Baltic Sea. Environmental Science & Technology, 2014, 48, 2598-2602.	10.0	109
44	Transformation of particle-bound phosphorus at the land-sea interface. Estuarine, Coastal and Shelf Science, 1995, 40, 161-176.	2.1	102
45	Preservation conditions and the use of sediment pigments as a tool for recent ecological reconstruction in four Northern European estuaries. Marine Chemistry, 2005, 95, 283-302.	2.3	101
46	Save the Baltic Sea. Nature, 2012, 486, 463-464.	27.8	99
47	Coastal eutrophication and the Danish national aquatic monitoring and assessment program. Estuaries and Coasts, 2002, 25, 848-861.	1.7	97
48	Tackling Hypoxia in the Baltic Sea: Is Engineering a Solution?. Environmental Science & Technology, 2009, 43, 3407-3411.	10.0	95
49	Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences, 2011, 8, 2281-2293.	3.3	93
50	Sediment-water Nutrient Fluxes in the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science, 1997, 45, 591-598.	2.1	89
51	Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time. Frontiers in Marine Science, 2017, 4, .	2.5	88
52	Diffuse and Point Sources of Silica in the Seine River Watershed. Environmental Science & Technology, 2006, 40, 6630-6635.	10.0	84
53	Mussel farming as a nutrient reduction measure in the Baltic Sea: Consideration of nutrient biogeochemical cycles. Marine Pollution Bulletin, 2011, 62, 1385-1388.	5.0	84
54	Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments. Journal of Paleolimnology, 2010, 43, 247-259.	1.6	83

#	Article	IF	CITATIONS
55	Past, Present and Future Eutrophication Status of the Baltic Sea. Frontiers in Marine Science, 2019, 6, .	2.5	78
56	Potential Role of Sponge Spicules in Influencing the Silicon Biogeochemistry of Florida Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1993, 50, 296-302.	1.4	77
57	Sediment Record of Biogeochemical Responses to Anthropogenic Perturbations of Nutrient Cycles in Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45, 1291-1303.	1.4	73
58	A Review of the Stable Isotope Bio-geochemistry of the Global Silicon Cycle and Its Associated Trace Elements. Frontiers in Earth Science, 2018, 5, .	1.8	73
59	A 150-year reconstruction of the history of coastal eutrophication in Roskilde Fjord, Denmark. Marine Pollution Bulletin, 2003, 46, 1615-1618.	5.0	71
60	Hypoxia and cyanobacteria blooms - are they really natural features of the late Holocene history of the Baltic Sea?. Biogeosciences, 2010, 7, 2567-2580.	3.3	71
61	SILICON DEPOSITION DURING THE CELL CYCLE OF THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) DETERMINED USING DUAL RHODAMINE 123 AND PROPIDIUM IODIDE STAINING1. Journal of Phycology, 1994, 30, 45-55.	2.3	70
62	Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea and Skagerrak. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59, 173-190.	1.4	70
63	Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments. Biogeochemistry, 1988, 6, 161-179.	3.5	64
64	Lack of steady-state in the global biogeochemical Si cycle: emerging evidence from lake Si sequestration. Biogeochemistry, 2014, 117, 255-277.	3.5	61
65	Factors regulating the coastal nutrient filter in the Baltic Sea. Ambio, 2020, 49, 1194-1210.	5.5	61
66	Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology, 2006, 32, 38-54.	2.0	60
67	Magnetic enhancement of Baltic Sea sapropels by greigite magnetofossils. Earth and Planetary Science Letters, 2013, 366, 137-150.	4.4	59
68	Paleolimnological records of regime shifts in lakes in response to climate change and anthropogenic activities. Journal of Paleolimnology, 2016, 56, 1-14.	1.6	59
69	System controls of coastal and open ocean oxygen depletion. Progress in Oceanography, 2021, 197, 102613.	3.2	59
70	Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading. Estuarine, Coastal and Shelf Science, 2006, 68, 567-578.	2.1	58
71	Biogeochemical nutrient cycles and nutrient management strategies. , 1999, , 87-96.		57
72	Biogenic Silica. Developments in Paleoenvironmental Research, 2002, , 281-293.	8.0	55

#	Article	IF	CITATIONS
73	Past, present and future state of the biogeochemical Si cycle in the Baltic Sea. Journal of Marine Systems, 2008, 73, 338-346.	2.1	54
74	Biogeochemical and environmental drivers of coastal hypoxia. Journal of Marine Systems, 2015, 141, 190-199.	2.1	51
75	Silicate weathering in the Ganges alluvial plain. Earth and Planetary Science Letters, 2015, 427, 136-148.	4.4	50
76	Silica fluxes and trapping in two contrasting natural impoundments of the upper Mississippi River. Biogeochemistry, 2008, 87, 217-230.	3.5	48
77	Silica cycling over geologic time. Nature Geoscience, 2015, 8, 431-432.	12.9	48
78	Silica and Phosphorus Flux from Sediments: Importance of Internal Recycling in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45, 1030-1035.	1.4	47
79	An enormous amorphous silica stock in boreal wetlands. Journal of Geophysical Research, 2010, 115, .	3.3	46
80	Global importance, patterns, and controls of dissolved silica retention in lakes and reservoirs. Global Biogeochemical Cycles, 2012, 26, .	4.9	46
81	Frequency, composition, and causes of summer phytoplankton blooms in a shallow coastal ecosystem, the Kattegat. Limnology and Oceanography, 2004, 49, 191-201.	3.1	45
82	Pedogenic and biogenic alkalineâ€extracted silicon distributions along a temperate landâ€use gradient. European Journal of Soil Science, 2014, 65, 693-705.	3.9	45
83	Hypoxiaâ€driven variations in iron and manganese shuttling in the Baltic Sea over the past 8 kyr. Geochemistry, Geophysics, Geosystems, 2015, 16, 3754-3766.	2.5	45
84	Effects of sediment storage conditions on pigment analyses. Limnology and Oceanography: Methods, 2005, 3, 477-487.	2.0	44
85	Methodologies for amorphous silica analysis. Journal of Geochemical Exploration, 2006, 88, 235-238.	3.2	44
86	Are recent changes in sediment manganese sequestration in the euxinic basins of the Baltic Sea linked to the expansion of hypoxia?. Biogeosciences, 2015, 12, 4875-4894.	3.3	44
87	Redox Effects on Organic Matter Storage in Coastal Sediments During the Holocene: A Biomarker/Proxy Perspective. Annual Review of Earth and Planetary Sciences, 2016, 44, 295-319.	11.0	44
88	Detecting environmental change in estuaries: Nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science, 2008, 76, 45-56.	2.1	42
89	Factors that Control the Range and Variability of Amorphous Silica in Soils in the Hubbard Brook Experimental Forest. Soil Science Society of America Journal, 2008, 72, 1637-1644.	2.2	42
90	Carbon cycling within an East African lake revealed by the carbon isotope composition of diatom silica: a 25-ka record from Lake Challa, Mt. Kilimanjaro. Quaternary Science Reviews, 2013, 66, 55-63.	3.0	41

#	Article	IF	CITATIONS
91	Variations in <i>Melosira islandica</i> valve morphology in Lake Ontario sediments related to eutrophication and silica depletion1. Limnology and Oceanography, 1985, 30, 414-418.	3.1	40
92	Alkalineâ€extractable silicon from land to ocean: A challenge for biogenic silicon determination. Limnology and Oceanography: Methods, 2015, 13, 329-344.	2.0	40
93	A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian silicon isotopes. Earth and Planetary Science Letters, 2016, 453, 67-77.	4.4	40
94	Baltic Sea Hypoxia Takes Many Shapes and Sizes. Limnology and Oceanography Bulletin, 2019, 28, 125-129.	0.4	40
95	QUANTITATIVE ANALYSIS OF SILICEOUS MICROFOSSILS IN THE SEDIMENTS OF LAKE ERIE'S CENTRAL BASIN. Diatom Research, 1987, 2, 113-134.	1.2	37
96	Large variations in iron input to an oligotrophic Baltic Sea estuary: impact on sedimentary phosphorus burial. Biogeosciences, 2018, 15, 6979-6996.	3.3	37
97	Short exposure to oxygen and sulfide alter nitrification, denitrification, and DNRA activity in seasonally hypoxic estuarine sediments. FEMS Microbiology Letters, 2019, 366, .	1.8	37
98	Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea. Journal of Marine Systems, 2008, 73, 284-299.	2.1	36
99	Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology, 2006, 32, 38-54.	2.0	32
100	Eutrophication: Time to Adjust Expectations—Response. Science, 2009, 324, 724-725.	12.6	32
101	Tracing silicon cycling in the Okavango Delta, a sub-tropical flood-pulse wetland using silicon isotopes. Geochimica Et Cosmochimica Acta, 2014, 142, 132-148.	3.9	32
102	Holocene climate and environmental change in north-eastern Kamchatka (Russian Far East), inferred from a multi-proxy study of lake sediments. Global and Planetary Change, 2015, 134, 41-54.	3.5	29
103	Dissolved Organic Nitrogen Inputs from Wastewater Treatment Plant Effluents Increase Responses of Planktonic Metabolic Rates to Warming. Environmental Science & Technology, 2015, 49, 11411-11420.	10.0	29
104	Competition between Silicifiers and Non-silicifiers in the Past and Present Ocean and Its Evolutionary Impacts. Frontiers in Marine Science, 2018, 5, .	2.5	29
105	Glacio-isostatic control on hypoxia in a high-latitude shelf basin. Geology, 2015, 43, 427-430.	4.4	28
106	Silica uptake and release in live and decaying biomass in a northern hardwood forest. Ecology, 2016, 97, 3044-3057.	3.2	27
107	Enrichment of dissolved silica in the deep equatorial Pacific during the Eoceneâ€Oligocene. Paleoceanography, 2017, 32, 848-863.	3.0	27
108	Application of the isotope pairing technique in sediments: Use, challenges, and new directions. Limnology and Oceanography: Methods, 2019, 17, 112-136.	2.0	27

#	Article	IF	CITATIONS
109	Silicon dynamics in the Oder estuary, Baltic Sea. Journal of Marine Systems, 2008, 73, 250-262.	2.1	26
110	Connecting the Seas of Norden. Nature Climate Change, 2015, 5, 89-92.	18.8	25
111	Combining limnology and palaeolimnology to investigate recent regime shifts in a shallow, eutrophic lake. Journal of Paleolimnology, 2014, 51, 437-448.	1.6	24
112	Removal of phosphorus and nitrogen in sediments of the eutrophic Stockholm archipelago, Baltic Sea. Biogeosciences, 2020, 17, 2745-2766.	3.3	24
113	Variability and seasonality of North Atlantic climate during the early Holocene: evidence from Faroe Island lake sediments. Holocene, 2008, 18, 851-860.	1.7	23
114	Amorphous Silica Transport in the Ganges Basin: Implications for Si Delivery to the Oceans. Procedia Earth and Planetary Science, 2014, 10, 271-274.	0.6	22
115	What is diatomite?. Quaternary Research, 2020, 96, 48-52.	1.7	22
116	Rapid Holocene climate changes in the North Atlantic: evidence from lake sediments from the Faroe Islands. Boreas, 2006, 35, 23-34.	2.4	21
117	Evolving coastal character of a Baltic Sea inlet during the Holocene shoreline regression: impact on coastal zone hypoxia. Journal of Paleolimnology, 2016, 55, 319-338.	1.6	21
118	Siliceous microfossil succession in Lake Michigan. Limnology and Oceanography, 1990, 35, 959-967.	3.1	20
119	Ecosystem thresholds with hypoxia. , 2009, , 21-29.		19
120	Historical Relationships between Phosphorus Loading and Biogenic Silica Accumulation in Bay of Quinte Sediments. Canadian Journal of Fisheries and Aquatic Sciences, 1985, 42, 1401-1409.	1.4	18
121	Ecological Regime Shifts in Lake KÇsjön, Sweden, in Response to Abrupt Climate Change Around the 8.2Âka Cooling Event. Ecosystems, 2012, 15, 1336-1350.	3.4	18
122	Origin and fate of dissolved organic matter in four shallow Baltic Sea estuaries. Biogeochemistry, 2021, 154, 385-403.	3.5	16
123	Caribbean hydrological variability during the Holocene as reconstructed from crater lakes on the island of Grenada. Journal of Quaternary Science, 2011, 26, 829-838.	2.1	15
124	Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea. Biogeosciences, 2016, 13, 4751-4765.	3.3	15
125	Estimated storage of amorphous silica in soils of the circumâ€Arctic tundra region. Clobal Biogeochemical Cycles, 2016, 30, 479-500.	4.9	15
126	The Role of Vegetation in the Okavango Delta Silica Sink. Wetlands, 2015, 35, 171-181.	1.5	14

#	Article	IF	CITATIONS
127	Changes in amorphous silica sequestration with eutrophication of riverine impoundments. Biogeochemistry, 2012, 108, 413-427.	3.5	13
128	Climate dependent diatom production is preserved in biogenic Si isotope signatures. Biogeosciences, 2011, 8, 3491-3499.	3.3	12
129	Amorphous silica pools in permafrost soils of the Central Canadian Arctic and the potential impact of climate change. Biogeochemistry, 2015, 124, 441-459.	3.5	12
130	Variability in chemistry of surface and soil waters of an evapotranspiration-dominated flood-pulsed wetland: solute processing in the Okavango Delta, Botswana. Water S A, 2017, 43, 104.	0.4	12
131	Coupled dynamics of iron, manganese, and phosphorus in brackish coastal sediments populated by cable bacteria. Limnology and Oceanography, 2021, 66, 2611-2631.	3.1	12
132	Identification of Characteristic Regions and Representative Stations: A Study of Water Quality Variables in the Kattegat. Environmental Monitoring and Assessment, 2004, 90, 203-224.	2.7	11
133	Assessing the Potential of Sponges (Porifera) as Indicators of Ocean Dissolved Si Concentrations. Frontiers in Marine Science, 2017, 4, .	2.5	11
134	Landscape-Scale Variability of Organic Carbon Burial by SW Greenland Lakes. Ecosystems, 2019, 22, 1706-1720.	3.4	11
135	Phosphorus burial in vivianite-type minerals in methane-rich coastal sediments. Marine Chemistry, 2021, 231, 103948.	2.3	11
136	Large differences between carbon and nutrient loss rates along the land to ocean aquatic continuum—implications for energy:nutrient ratios at downstream sites. Limnology and Oceanography, 2017, 62, S183.	3.1	10
137	Multi-proxy record of Holocene paleoenvironmental conditions from Yellowstone Lake, Wyoming, USA. Quaternary Science Reviews, 2021, 274, 107275.	3.0	10
138	Si cycling in transition zones: a study of Si isotopes and biogenic silica accumulation in the Chesapeake Bay through the Holocene. Biogeochemistry, 2019, 146, 145-170.	3.5	9
139	Constraints on Earth System Functioning at the Paleoceneâ€Eocene Thermal Maximum From the Marine Silicon Cycle. Paleoceanography and Paleoclimatology, 2020, 35, e2020PA003873.	2.9	9
140	The trapping of organic matter within plant patches in the channels of the Okavango Delta: a matter of quality. Aquatic Sciences, 2017, 79, 661-674.	1.5	8
141	Distribution of biogenic silica in the surficial sediments of Lake Michigan. Canadian Journal of Earth Sciences, 1986, 23, 1442-1449.	1.3	7
142	Hypoxia, nutrient management and restoration in danish waters. Coastal and Estuarine Studies, 2001, , 425-434.	0.4	7
143	Response to Rose et al. and Petersen et al Marine Pollution Bulletin, 2012, 64, 455-456.	5.0	7
144	Impact of human disturbance on the biogeochemical silicon cycle in a coastal sea revealed by silicon isotopes. Limnology and Oceanography, 2020, 65, 515-528.	3.1	7

#	Article	IF	CITATIONS
145	Human influence on the continental Si budget during the last 4300 years: δ30Sidiatom in varved lake sediments (Tiefer See, NE Germany). Quaternary Science Reviews, 2021, 258, 106869.	3.0	7
146	Modern silicon dynamics of a small high-latitude subarctic lake. Biogeosciences, 2021, 18, 2325-2345.	3.3	7
147	Recovery from multiâ€millennial natural coastal hypoxia in the Stockholm Archipelago, Baltic Sea, terminated by modern human activity. Limnology and Oceanography, 2020, 65, 3085-3097.	3.1	6
148	Size Structure of Particulate Biogenic Silica in Lake Michigan. Journal of Great Lakes Research, 1991, 17, 18-24.	1.9	5
149	The contribution of tephra constituents during biogenic silica determination: implications for soil and palaeoecological studies. Biogeosciences, 2015, 12, 3789-3804.	3.3	5
150	Sediment alkaline-extracted organic matter (AEOM) fluorescence: An archive of Holocene marine organic matter origins. Science of the Total Environment, 2019, 676, 298-304.	8.0	4
151	Quantifying Nonâ€Thermal Silicate Weathering Using Ge/Si and Si Isotopes in Rivers Draining the Yellowstone Plateau Volcanic Field, USA. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009904.	2.5	4
152	Linking silicon isotopic signatures with diatom communities. Geochimica Et Cosmochimica Acta, 2022, 323, 102-122.	3.9	4
153	Rapid Holocene climate changes in the North Atlantic: evidence from lake sediments from the Faroe Islands. Boreas, 2008, 35, 23-34.	2.4	2
154	Success in grant applications for women and men. Advances in Geosciences, 0, 53, 107-115.	12.0	2
155	A reply to the comment by Karlsson et al Limnology and Oceanography, 2019, 64, 1832-1833.	3.1	1
156	Impact of Holocene climate change on silicon cycling in Lake 850, Northern Sweden. Holocene, 2021, 31, 1582-1592.	1.7	1
157	Special Issue IBIS 2011: The Biogeochemical Silica Cycle From Land to Ocean. Silicon, 2013, 5, 1-2.	3.3	0
158	Silica, Be Dammed!. , 2017, , 135-156.		0
159	Yellowstone Lake Coring Projects: Research with a History. Limnology and Oceanography Bulletin, 2018, 27, 6-10.	0.4	0
160	CLAIRE L. SCHELSKE (1932–2019). Limnology and Oceanography Bulletin, 2019, 28, 147-147.	0.4	0