Rebecca B Dikow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2235593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep learning as a tool for ecology and evolution. Methods in Ecology and Evolution, 2022, 13, 1640-1660.	5.2	55
2	Confronting Sources of Systematic Error to Resolve Historically Contentious Relationships: A Case Study Using Gadiform Fishes (Teleostei, Paracanthopterygii, Gadiformes). Systematic Biology, 2021, 70, 739-755.	5.6	14
3	Draft Genome Assemblies and Annotations of <i>Agrypnia vestita</i> Walker, and <i>Hesperophylax magnus</i> Banks Reveal Substantial Repetitive Element Expansion in Tube Case-Making Caddisflies (Insecta: Trichoptera). Genome Biology and Evolution, 2021, 13, .	2.5	14
4	First Annotated Genome of a Mandibulate Moth, <i>Neomicropteryx cornuta</i> , Generated Using PacBio HiFi Sequencing. Genome Biology and Evolution, 2021, 13, .	2.5	7
5	Generating segmentation masks of herbarium specimens and a data set for training segmentation models using deep learning. Applications in Plant Sciences, 2020, 8, e11352.	2.1	25
6	Dense sampling of bird diversity increases power of comparative genomics. Nature, 2020, 587, 252-257.	27.8	251
7	Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps. BMC Biology, 2020, 18, 89.	3.8	24
8	First Genome Sequence of the Gunnison's Prairie Dog (Cynomys gunnisoni), a Keystone Species and Player in the Transmission of Sylvatic Plague. Genome Biology and Evolution, 2020, 12, 618-625.	2.5	6
9	Genomic architecture and introgression shape a butterfly radiation. Science, 2019, 366, 594-599.	12.6	365
10	A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14083-14088.	7.1	195
11	Congruent phylogenetic relationships of Melaphidina aphids (Aphididae: Eriosomatinae: Fordini) according to nuclear and mitochondrial DNA data with taxonomic implications on generic limits. PLoS ONE, 2019, 14, e0213181.	2.5	17
12	Population Genomics and Structure of the Critically Endangered Mariana Crow (Corvus kubaryi). Genes, 2019, 10, 187.	2.4	11
13	An empirical assessment of a single familyâ€wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. Applications in Plant Sciences, 2019, 7, e11295.	2.1	28
14	Another look at the phylogenetic relationships and intercontinental biogeography of eastern Asian – North American Rhus gall aphids (Hemiptera: Aphididae: Eriosomatinae): Evidence from mitogenome sequences via genome skimming. Molecular Phylogenetics and Evolution, 2017, 117, 102-110.	2.7	32
15	Developing integrative systematics in the informatics and genomic era, and calling for a global Biodiversity Cyberbank. Journal of Systematics and Evolution, 2017, 55, 308-321.	3.1	43
16	The Compositae Tree of Life in the age of phylogenomics. Journal of Systematics and Evolution, 2017, 55, 405-410.	3.1	61
17	Applications of deep convolutional neural networks to digitized natural history collections. Biodiversity Data Journal, 2017, 5, e21139.	0.8	40
18	Genomic and transcriptomic resources for assassin flies including the complete genome sequence of <i>Proctacanthus coquilletti</i> (Insecta: Diptera: Asilidae) and 16 representative transcriptomes. PeerJ, 2017, 5, e2951.	2.0	23

REBECCA B DIKOW

#	Article	IF	CITATIONS
19	Reciprocal genomic evolution in the ant–fungus agricultural symbiosis. Nature Communications, 2016, 7, 12233.	12.8	106
20	Using phylogenomics to resolve megaâ€families: An example from Compositae. Journal of Systematics and Evolution, 2015, 53, 391-402.	3.1	76
21	A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae. Applications in Plant Sciences, 2014, 2, 1300085.	2.1	178
22	Genomic resources for the endangered Hawaiian honeycreepers. BMC Genomics, 2014, 15, 1098.	2.8	21
23	Genome-level homology and phylogeny of Vibrionaceae (Gammaproteobacteria: Vibrionales) with three new complete genome sequences. BMC Microbiology, 2013, 13, 80.	3.3	11
24	Complete genome sequences provide a case study for the evaluation of geneâ€ŧree thinking. Cladistics, 2013, 29, 672-682.	3.3	5
25	Systematic relationships within the Vibrionaceae (Bacteria: Gammaproteobacteria): steps toward a phylogenetic taxonomy. Cladistics, 2011, 27, 9-28.	3.3	12
26	Genome-level homology and phylogeny of Shewanella (Gammaproteobacteria: lteromonadales:) Tj ETQq0 0 0 rgl	3T /Qverlov 2.8	ck 10 Tf 50 4

27	Phylogenetic analysis of the endemic New Caledonian cockroach <i>Lauraesilpha</i> . Testing competing hypotheses of diversification. Cladistics, 2008, 24, 802-812.	3.3	34
28	DNA-barcoding evidence for widespread introductions of a leech from the South AmericanHelobdella triserialis complex. Conservation Genetics, 2005, 6, 467-472.	1.5	41
29	New Gammaproteobacteria Associated with Blood-Feeding Leeches and a Broad Phylogenetic Analysis of Leech Endosymbionts. Applied and Environmental Microbiology, 2005, 71, 5219-5224.	3.1	26
30	Phylogenetic evaluation of systematics and biogeography of the leech family Glossiphoniidae. Invertebrate Systematics, 2005, 19, 105.	1.3	90
31	Twelve variable microsatellite loci for the North American medicinal leech, Macrobdella decora. Molecular Ecology Notes, 2004, 4, 491-493.	1.7	4
32	Generating Masks for Image Segmentation in Digitized Herbarium Specimens. Biodiversity Information	0.0	0
	Science and Standards, 0, 3, .	0.0	0
33	Science and Standards, 0, 3, . Discovering Patterns of Biodiversity in Insects Using Deep Machine Learning. Biodiversity Information Science and Standards, 0, 3, .	0.0	1