Riccardo Vivani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2234665/publications.pdf

Version: 2024-02-01

101543 114465 4,457 112 36 63 citations h-index g-index papers 119 119 119 3928 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis, Crystal Structure, and Antibacterial Properties of Silver-Functionalized Low-Dimensional Layered Zirconium Phosphonates. Inorganic Chemistry, 2022, 61, 2251-2264.	4.0	5
2	Circular Hazelnut Protection by Lignocellulosic Waste Valorization for Nanopesticides Development. Applied Sciences (Switzerland), 2022, 12, 2604.	2.5	9
3	The "Historical Materials BAG― A New Facilitated Access to Synchrotron X-ray Diffraction Analyses for Cultural Heritage Materials at the European Synchrotron Radiation Facility. Molecules, 2022, 27, 1997.	3.8	17
4	Deeper insights into the photoluminescence properties and (photo)chemical reactivity of cadmium red (CdS1â^'xSex) paints in renowned twentieth century paintings by state-of-the-art investigations at multiple length scales. European Physical Journal Plus, 2022, 137, 1.	2.6	5
5	Vibrational and Electronic Circular Dichroism Study of Chiral Seleno Compounds Prepared from a Naphthol Based Diselenide. European Journal of Organic Chemistry, 2022, 2022, .	2.4	2
6	Bioinspired Reactive Interfaces Based on Layered Double Hydroxides-Zn Rich Hydroxyapatite with Antibacterial Activity. ACS Biomaterials Science and Engineering, 2021, 7, 1361-1373.	5.2	15
7	Multi-Scale Minero-Chemical Analysis of Biomass Ashes: A Key to Evaluating Their Dangers vs. Benefits. Sustainability, 2021, 13, 6052.	3.2	1
8	Metal–Organic Frameworks in Italy: From synthesis and advanced characterization to theoretical modeling and applications. Coordination Chemistry Reviews, 2021, 437, 213861.	18.8	10
9	Exploring Taxifolin Polymorphs: Insights on Hydrate and Anhydrous Forms. Pharmaceutics, 2021, 13, .	4.5	O
10	Exploring Taxifolin Polymorphs: Insights on Hydrate and Anhydrous Forms. Pharmaceutics, 2021, 13, 1328.	4.5	6
11	Investigating the effect of positional isomerism on the assembly of zirconium phosphonates based on tritopic linkers. Dalton Transactions, 2020, 49, 3662-3666.	3.3	8
12	A new challenge for nanocrystalline \hat{l}_{\pm} -zirconium phosphate: reaction with a diepoxyalkane. Dalton Transactions, 2020, 49, 3869-3876.	3.3	3
13	Synchrotron radiation Ca K-edge 2D-XANES spectroscopy for studying the stratigraphic distribution of calcium-based consolidants applied in limestones. Scientific Reports, 2020, 10, 14337.	3.3	6
14	Iridium-Doped Nanosized Zn–Al Layered Double Hydroxides as Efficient Water Oxidation Catalysts. ACS Applied Materials & Double Hydroxides as Efficient Water Oxidation Catalysts. ACS	8.0	24
15	Ir- and Ru-doped layered double hydroxides as affordable heterogeneous catalysts for electrochemical water oxidation. Dalton Transactions, 2020, 49, 2468-2476.	3.3	29
16	Effect of the Nano-Ca(OH)2 Addition on the Portland Clinker Cooking Efficiency. Materials, 2019, 12, 1787.	2.9	1
17	Antibacterial Properties of a Novel Zirconium Phosphate-Glycinediphosphonate Loaded with Either Zinc or Silver. Materials, 2019, 12, 3184.	2.9	9
18	Zirconium Carboxyaminophosphonate Nanosheets as Support for Ag Nanoparticles. Materials, 2019, 12, 3185.	2.9	5

#	Article	IF	CITATIONS
19	Au@zirconium-phosphonate nanoparticles as an effective catalytic system for the chemoselective and switchable reduction of nitroarenes. Green Chemistry, 2019, 21, 614-626.	9.0	36
20	D-leucine microparticles as an excipient to improve the aerosolization performances of dry powders for inhalation. European Journal of Pharmaceutical Sciences, 2019, 130, 54-64.	4.0	14
21	New Directions in Metal Phosphonate and Phosphinate Chemistry. Crystals, 2019, 9, 270.	2.2	81
22	A Novel Stabilizing Approach to Improve the Manufacturing of Biodegradable Microparticles Entrapping Plasticizing Active Molecules: the Case of 4-Methoxychalcone. Journal of Pharmaceutical Innovation, 2019, 14, 159-175.	2.4	1
23	Chitosan composite microparticles: A promising gastroadhesive system for taxifolin. Carbohydrate Polymers, 2019, 218, 343-354.	10.2	18
24	Investigation on the process of lead white blackening by Raman spectroscopy, XRD and other methods: Study of Cimabue's paintings in Assisi. Vibrational Spectroscopy, 2018, 98, 41-49.	2.2	22
25	Trace elements in surface sediments from Kongsfjorden, Svalbard: occurrence, sources and bioavailability. International Journal of Environmental Analytical Chemistry, 2017, 97, 401-418.	3.3	15
26	Layered Tbâ€Doped Yttrium Carboxyphosphonate Nanocrystals as Efficient Filler for PEDOT:PSS Composite Films. ChemNanoMat, 2017, 3, 575-582.	2.8	1
27	Molecular and structural characterization of some violet phosphate pigments for their non-invasive identification in modern paintings. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 439-444.	3.9	11
28	Immobilized Palladium Nanoparticles on Zirconium Carboxy-Aminophosphonates Nanosheets as an Efficient Recoverable Heterogeneous Catalyst for Suzuki–Miyaura and Heck Coupling. Catalysts, 2017, 7, 186.	3.5	31
29	Robust Metalâ€Organic Frameworks Based on Tritopic Phosphonoaromatic Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 4300-4309.	2.0	59
30	SOFC direct fuelling with high-methane gases: Optimal strategies for fuel dilution and upgrade to avoid quick degradation. Energy Conversion and Management, 2016, 124, 492-503.	9.2	31
31	Amino-Functionalized Layered Crystalline Zirconium Phosphonates: Synthesis, Crystal Structure, and Spectroscopic Characterization. Inorganic Chemistry, 2016, 55, 6278-6285.	4.0	23
32	A Ternary Znâ^'Alâ^'Ir Hydrotalciteâ€Like Compound Exhibiting High Efficiency and Recyclability as a Water Oxidation Catalyst. ChemPlusChem, 2016, 81, 1060-1063.	2.8	18
33	UV–Vis-NIR and microRaman spectroscopies for investigating the composition of ternary CdS 1â^'x Se x solid solutions employed as artists' pigments. Microchemical Journal, 2016, 125, 279-289.	4.5	23
34	UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd 1â^'x Zn x S solid solutions in cadmium yellow pigments. Microchemical Journal, 2016, 124, 856-867.	4.5	68
35	Efficient microwave assisted synthesis of metal–organic framework UiO-66: optimization and scale up. Dalton Transactions, 2015, 44, 14019-14026.	3.3	104
36	Small is Beautiful: The Unusual Transformation of Nanocrystalline Layered α-Zirconium Phosphate into a New 3D Structure. Inorganic Chemistry, 2015, 54, 9146-9153.	4.0	18

#	Article	IF	Citations
37	Accessing stable zirconium carboxy-aminophosphonate nanosheets as support for highly active Pd nanoparticles. Chemical Communications, 2015, 51, 15990-15993.	4.1	42
38	Activity and Recyclability of an Iridium–EDTA Water Oxidation Catalyst Immobilized onto Rutile TiO ₂ . ACS Catalysis, 2015, 5, 264-271.	11.2	48
39	A Layered Mixed Zirconium Phosphate/Phosphonate with Exposed Carboxylic and Phosphonic Groups: X-ray Powder Structure and Proton Conductivity Properties. Inorganic Chemistry, 2014, 53, 13220-13226.	4.0	71
40	The first route to highly stable crystalline microporous zirconium phosphonate metal–organic frameworks. Chemical Communications, 2014, 50, 14831-14834.	4.1	96
41	The use of a rigid tritopic phosphonic ligand for the synthesis of a robust honeycomb-like layered zirconium phosphonate framework. Chemical Communications, 2014, 50, 5737-5740.	4.1	54
42	Ion exchange and intercalation properties of layered double hydroxides towards halide anions. Dalton Transactions, 2014, 43, 11587-11596.	3.3	44
43	Effect of iodine intercalation in nanosized layered double hydroxides for the preparation of quasi-solid electrolyte in DSSC devices. Solar Energy, 2014, 107, 692-699.	6.1	15
44	Co-based hydrotalcites as new catalysts for the Fischer–Tropsch synthesis process. Fuel, 2014, 119, 62-69.	6.4	33
45	Synthesis, Crystal Structure, and Proton Conductivity of One-Dimensional, Two-Dimensional, and Three-Dimensional Zirconium Phosphonates Based on Glyphosate and Glyphosine. Inorganic Chemistry, 2013, 52, 12131-12139.	4.0	47
46	On the role of non-covalent interactions in the assembly of 3D zirconium methyl- and ethyl-N,N-bis phosphonates. Dalton Transactions, 2013, 42, 9671.	3.3	14
47	On the Intercalation of the Iodine–Iodide Couple on Layered Double Hydroxides with Different Particle Sizes. Inorganic Chemistry, 2012, 51, 2560-2568.	4.0	52
48	Photoluminescence Properties of Zinc Oxide in Paints: A Study of the Effect of Self-Absorption and Passivation. Applied Spectroscopy, 2012, 66, 1233-1241.	2.2	45
49	Influence of π–π Stacking Interactions on the Assembly of Layered Copper Phosphonate Coordination Polymers: Combined Powder Diffraction and Electron Paramagnetic Resonance Study. Crystal Growth and Design, 2012, 12, 2327-2335.	3.0	24
50	Design and synthesis of plasticizing fillers based on zirconium phosphonates for glycerol-free composite starch films. Journal of Materials Chemistry, 2012, 22, 5098.	6.7	16
51	Advances in the Chemistry of Nanosized Zirconium Phosphates: A New Mild and Quick Route to the Synthesis of Nanocrystals. Inorganic Chemistry, 2011, 50, 11623-11630.	4.0	60
52	New Hybrid Zirconium Aminophosphonates Containing Piperidine and Bipiperidine Groups. Inorganic Chemistry, 2011, 50, 10835-10843.	4.0	19
53	Chapter 2. Zirconium Phosphonates. , 2011, , 45-86.		1
54	Zinc–aluminum hydrotalcites as precursors of basic catalysts: Preparation, characterization and study of the activation of methanol. Catalysis Today, 2010, 152, 104-109.	4.4	66

#	Article	IF	CITATIONS
55	High Yield Precipitation of Crystalline α-Zirconium Phosphate from Oxalic Acid Solutions. Inorganic Chemistry, 2010, 49, 9409-9415.	4.0	41
56	Synthesis and Crystal Structure from X-ray Powder Diffraction Data of Two Zirconium Diphosphonates Containing Piperazine Groups. Inorganic Chemistry, 2010, 49, 9664-9670.	4.0	60
57	Recent progress in the synthesis and application of organically modified hydrotalcites. Zeitschrift FÃ $\frac{1}{4}$ r Kristallographie, 2009, 224, 273-281.	1.1	89
58	New advances in zirconium phosphate and phosphonate chemistry: Structural archetypes. Microporous and Mesoporous Materials, 2008, 107, 58-70.	4.4	106
59	New Architectures for Zirconium Polyphosphonates with a Tailor-Made Open-Framework Structure. Inorganic Chemistry, 2006, 45, 2388-2390.	4.0	41
60	New inorganic-organic solids based on zirconium aminopolyphosphonates. Acta Crystallographica Section A: Foundations and Advances, 2006, 62, s270-s270.	0.3	0
61	Structural homologies in benzylamino-N,N-bis methylphosphonic acid and its layered zirconium derivative. Journal of Solid State Chemistry, 2004, 177, 4013-4022.	2.9	18
62	Vibrational Study of Some Layered Structures Based on Titanium and Zirconium Phosphates ChemInform, 2004, 35, no.	0.0	0
63	Cyclic dialkylindium amides: new structural information and ultra-purification using inorganic and inorgano–organic layered materials. Journal of Organometallic Chemistry, 2004, 689, 3000-3004.	1.8	2
64	Anionic Ligand Exchange on ZrPO4Cl(dmso):  Alkoxide and Carboxylate Derivatives. Inorganic Chemistry, 2004, 43, 368-374.	4.0	16
65	Preparation and characterization of zirconium phosphonate–azobenzene intercalation compounds. A structural, photophysical and photochemical study. Journal of Materials Chemistry, 2004, 14, 1656-1662.	6.7	27
66	Vibrational Study of Some Layered Structures Based on Titanium and Zirconium Phosphates. Inorganic Chemistry, 2004, 43, 5698-5703.	4.0	68
67	Dimensional reduction in zirconium phosphate; from layers to ribbons to chains. Journal of Materials Chemistry, 2003, 13, 1215-1222.	6.7	17
68	Layered Zirconium Phosphate Chloride Dimethyl Sulfoxide as a Two-Dimensional Exchanger of Anionic Ligands. Part I. Substitution of Chloride with Inorganic Monodentate Ligands. Inorganic Chemistry, 2002, 41, 1913-1919.	4.0	15
69	Microwave-Assisted Intercalation of 1-Alkanols and 1,ï‰-Alkanediols into α-Zirconium Phosphate. Evidence of Conformational Phase Transitions in the Bimolecular Film of Alkyl Chains. Langmuir, 2002, 18, 1211-1217.	3 . 5	23
70	Modeling and Analysis of the X-ray Powder Diffraction Structure of Î ³ -Zirconium Phosphates Pillared with Butyl Chains through Molecular Dynamics Simulations. Chemistry of Materials, 2002, 14, 295-303.	6.7	9
71	Crystal engineering on layered zirconium phosphonates. Crystal structure (from X-ray powder data) and non-covalent interactions on the layered zirconium compound of 4-[bis(phosphonomethyl)amino]butanoic acid. Journal of Materials Chemistry, 2002, 12, 3254-3260.	6.7	35
72	Preparation, Characterization, and Structure of Zirconium Fluoride Alkylamino-N,N-bis Methylphosphonates:Â A New Design for Layered Zirconium Diphosphonates with a Poorly Hindered Interlayer Region. Journal of the American Chemical Society, 2002, 124, 8428-8434.	13.7	68

#	Article	IF	Citations
73	Intercalation of a nitronyl nitroxide radical into layered inorganic hosts Inorganica Chimica Acta, 2002, 338, 127-132.	2.4	18
74	Proton conductivity of mesoporous zirconium phosphate pyrophosphate. Solid State Ionics, 1999, 125, 91-97.	2.7	76
75	Title is missing!. Journal of Porous Materials, 1999, 6, 299-305.	2.6	33
76	Shaping Solid-State Supramolecular Cavities: Chemically Induced Accordionlike Movement of ³ -Zirconium Phosphate Containing Polyethylenoxide Pillars. Angewandte Chemie - International Edition, 1999, 38, 3351-3353.	13.8	43
77	Derivation of Force Field Parameters, and Force Field and Quantum Mechanical Studies of Layered \hat{l}^{\pm} and \hat{l}^{3} -Zirconium Phosphates. Inorganic Chemistry, 1999, 38, 4249-4255.	4.0	15
78	Title is missing!. Journal of Porous Materials, 1998, 5, 221-226.	2.6	17
79	Microporous Solids Based on Pillared Metal(IV) Phosphates and Phosphonates. Journal of Porous Materials, 1998, 5, 205-220.	2.6	44
80	New Synthetic Routes to Hydrotalcite-Like Compounds \hat{a} Characterisation and Properties of the Obtained Materials. European Journal of Inorganic Chemistry, 1998, 1998, 1439-1446.	2.0	581
81	Amino Acid Derivatives of Layered Zirconium Phosphates – α-Zirconium L-(+)-Serinephosphate and Zirconium L-(+)-Serinephosphate Phosphates. European Journal of Inorganic Chemistry, 1998, 1998, 1447-1452.	2.0	10
82	First structural determination of layered and pillared organic derivatives of \hat{l}^3 -zirconium phosphate by X-ray powder diffraction data. Journal of Molecular Structure, 1998, 470, 81-92.	3.6	24
83	Preparation of a covalently pillared î±-zirconium phosphite-diphosphonate with a high degree of interlayer porosity. Microporous and Mesoporous Materials, 1998, 21, 297-304.	4.4	14
84	Mechanism of the Topotactic Formation of \hat{I}^3 -Zirconium Phosphate Covalently Pillared with Diphosphonate Groups. Inorganic Chemistry, 1998, 37, 4672-4676.	4.0	22
85	Intercalation and Grafting of n-Alkyl Phosphonates into Synthetic Hydrotalcites. Molecular Crystals and Liquid Crystals, 1998, 311, 207-212.	0.3	12
86	Preparation and First Characterisation of a Pillared \hat{I}^3 -Zirconium Phosphate Derivative Containing Dibenzo 18-Crown-6 Groups Covalently Bound to Inorganic Layers. Supramolecular Chemistry, 1998, 9, 99-108.	1.2	2
87	Intercalation and Thermal Decomposition of Urea in Layered Zirconium Phosphates of \hat{l}_{\pm} - and \hat{l}_{\pm} -Type. Molecular Crystals and Liquid Crystals, 1998, 311, 251-256.	0.3	0
88	Electrochemical and spectroscopic characterisation of barium acid salts of 3,5-disulfophenylphosphonic acid. Journal of Materials Chemistry, 1998, 8, 961-964.	6.7	21
89	Pillared Derivatives of \hat{I}^3 -Zirconium Phosphate Containing Nonrigid Alkyl Chain Pillars. Journal of the American Chemical Society, 1998, 120, 9291-9295.	13.7	86
90	Zirconium Phosphate Chloride Dimethyl Sulfoxide, a Reactive Precursor of a Large Family of Layered Compounds. Inorganic Chemistry, 1997, 36, 3574-3575.	4.0	24

#	Article	IF	Citations
91	Intercalation of Dyes in Layered Zirconium Phosphates. 1. Preparation and Spectroscopic Characterization of α-Zirconium Phosphate Crystal Violet Compounds. Langmuir, 1997, 13, 7252-7257.	3.5	46
92	Intercalation and grafting of hydrogen phosphates and phosphonates into synthetic hydrotalcites and a.cconductivity of the compounds thereby obtained. Solid State Ionics, 1997, 97, 203-212.	2.7	112
93	Formation of Colloidal Dispersions of Layered \hat{I}^3 -Zirconium Phosphate in Water/Acetone Mixtures. Journal of Colloid and Interface Science, 1997, 188, 27-31.	9.4	48
94	Thermoanalytical Study, Phase Transitions, and Dimensional Changes ofl±-Zr(HPO4)2·H2O Large Crystals. Journal of Solid State Chemistry, 1997, 132, 17-23.	2.9	23
95	Preparation and first characterization of a layered \hat{l}^3 -zirconium phosphate derivative containing benzo 15-crown-5 groups covalently attached to inorganic layers. Supramolecular Chemistry, 1996, 7, 129-135.	1.2	25
96	Layered and pillared metal(IV) phosphates and phosphonates. Advanced Materials, 1996, 8, 291-303.	21.0	391
97	New Layered and Pillared-Type Compounds, Their Intercalation Chemistry and Applications. , 1996, , 143-157.		1
98	Layered and pillared zirconium phosphate-phosphonates and their inclusion chemistry. Supramolecular Chemistry, 1995, 6, 29-40.	1.2	47
99	Layered and Pillared Zirconium Phosphates with \hat{l}_{\pm} - and \hat{l}_{3} -Structures. Materials Science Forum, 1994, 152-153, 87-98.	0.3	11
100	Preparation, Characterization, and Structure of α-Zirconium Hydrogen Phosphate Hemihydrate. Journal of Solid State Chemistry, 1994, 113, 289-295.	2.9	39
101	Preparation and Preliminary Characterization of a Covalently Pillared Zirconium Phosphate- Diphosphonate with Interlayer Microporosity. Angewandte Chemie International Edition in English, 1994, 33, 1594-1597.	4.4	119
102	Zirconium Phosphite (3,3?,5,5?-Tetramethylbiphenyl)diphosphonate, a Microporous, Layered, Inorganic-Organic Polymer. Angewandte Chemie International Edition in English, 1993, 32, 1357-1359.	4.4	189
103	Zirconimphosphitâ€(3,3′5,5′â€ŧetramethylbiphenyl)diphosphonat: ein mikroporöses anorganischâ€organis Polymer mit SĀÞenâ€Schichtstruktur. Angewandte Chemie, 1993, 105, 1396-1398.	sches 2.0	33
104	Preparation and some properties of \hat{l}^3 -zirconium phosphate benzenephosphonate. Reactive & Functional Polymers, 1993, 19, 1-12.	0.8	28
105	Preparation and characterization of zirconium phosphate diphosphonates with the \hat{I}^3 -structure: a new class of covalently pillared compounds. Materials Chemistry and Physics, 1993, 35, 187-192.	4.0	33
106	Preparation and characterization of zirconium phosphate phosphonates, ZrPO4(H2PO4)1-x(RPO2OH)x.nH2O, with .gammalayer structure (R = CH3, C3H7, C6H11). Inorganic Chemistry, 1993, 32, 4600-4604.	4.0	34
107	Study of the Intercalation of Tetramethylbenzidine in Layered Zirconium Phosphates to Obtain Pillared Materials. Materials Science Forum, 1992, 91-93, 147-152.	0.3	2
108	Preparation and some preliminary investigations of ion exchange and intercalation properties of \hat{I}^3 -zirconium phosphate phosphite. Reactive & Functional Polymers, 1992, 17, 245-253.	0.8	26

#	ARTICLE	IF	CITATION
109	Preparation Of Zirconium Diphosphonate-Phosphites With A Narrow Distribution Of Mesopores Materials Research Society Symposia Proceedings, 1991, 233, 101.	0.1	7
110	Zirconium Organic Diphosphate-Diphosphonates With Tilted Rigid Pillars Materials Research Society Symposia Proceedings, 1991, 233, 95.	0.1	7
111	Proton conductivity of zirconium carboxy n-alkyl phosphonates with an α-layered structure. Solid State Ionics, 1991, 46, 61-68.	2.7	48
112	Ion exchange properties of zirconium phosphate phosphite with alkaline earth metal ions Solvent Extraction and Ion Exchange, 1990, 8, 713-728.	2.0	5