
Guoqiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2234621/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Insight into Hydroboration of Imines from Combined Computational and Experimental Studies. Chemistry - A European Journal, 2022, 28, .	3.3	8
2	lodoperfluoroalkylation of unactivated alkenes <i>via</i> pyridine-boryl radical initiated atom-transfer radical addition. Organic and Biomolecular Chemistry, 2022, 20, 2857-2862.	2.8	8
3	Photoinduced manganese-catalysed hydrofluorocarbofunctionalization of alkenes. , 2022, 1, 475-486.		36
4	Intramolecular Friedel–Crafts alkylation with a silylium-ion-activated cyclopropyl group: formation of tricyclic ring systems from benzyl-substituted vinylcyclopropanes and hydrosilanes. Chemical Science, 2021, 12, 569-575.	7.4	20
5	Mild reductive rearrangement of oximes and oxime ethers to secondary amines with hydrosilanes catalyzed by B(C ₆ F ₅) ₃ . Organic Chemistry Frontiers, 2021, 8, 3280-3285.	4.5	6
6	Borane-catalyzed selective dihydrosilylation of terminal alkynes: reaction development and mechanistic insight. Chemical Science, 2021, 12, 10883-10892.	7.4	13
7	B(C ₆ F ₅) ₃ -Catalyzed Sequential Additions of Terminal Alkynes to <i>para</i> -Substituted Phenols: Selective Construction of Congested Phenol-Substituted Quaternary Carbons. Organic Letters, 2021, 23, 5533-5538.	4.6	10
8	B(C ₆ F ₅) ₃ â€Catalyzed Hydroarylation of Aryl Alkynes for the Synthesis of 1,1â€Điaryl and Triaryl Substituted Alkenes. European Journal of Organic Chemistry, 2021, 2021, 5238-5242.	2.4	4
9	Mechanistic insights into the dearomative diborylation of pyrazines: a radical or non-radical process?. Dalton Transactions, 2021, 50, 6982-6990.	3.3	8
10	B(C ₆ F ₅) ₃ â€Catalyzed Tandem Friedelâ€Crafts and Câ^'H/Câ^'O Coupling Reactions of Dialkylanilines. Chemistry - an Asian Journal, 2020, 15, 3082-3086.	3.3	6
11	Metal-free reductive coupling of aliphatic aldehydes/ketones with 4-cyanopyridines: expanded scope and mechanistic studies. Organic Chemistry Frontiers, 2020, 7, 2744-2751.	4.5	24
12	Synthese eines gegenanionstabilisierten Bis(silylium)ions. Angewandte Chemie, 2020, 132, 10609-10613.	2.0	5
13	Synthesis of a Counteranion‣tabilized Bis(silylium) Ion. Angewandte Chemie - International Edition, 2020, 59, 10523-10526.	13.8	16
14	Silylium-Ion-Promoted Ring-Opening Hydrosilylation and Disilylation of Unactivated Cyclopropanes. Organic Letters, 2020, 22, 1213-1216.	4.6	31
15	Silyliumâ€Ionâ€Promoted (5+1) Cycloaddition of Arylâ€Substituted Vinylcyclopropanes and Hydrosilanes Involving Aryl Migration. Angewandte Chemie, 2020, 132, 12284-12289.	2.0	5
16	Silyliumâ€Ionâ€Promoted (5+1) Cycloaddition of Arylâ€Substituted Vinylcyclopropanes and Hydrosilanes Involving Aryl Migration. Angewandte Chemie - International Edition, 2020, 59, 12186-12191.	13.8	25
17	Transitionâ€Metalâ€Free Defluorosilylation of Fluoroalkenes with Silylboronates. Chinese Journal of Chemistry, 2019, 37, 1009-1014.	4.9	49
18	Mechanistic Insight Into the AuCN Catalyzed Annulation Reaction of Salicylaldehyde and Aryl Acetylene: Cyanide Ion Promoted Umpolung Hydroacylation/Intramolecular Oxa-Michael Addition Mechanism. Frontiers in Chemistry, 2019, 7, 557.	3.6	3

GUOQIANG WANG

#	Article	IF	CITATIONS
19	Lewis Acid-Catalyzed Selective Reductive Decarboxylative Pyridylation of <i>N</i> -Hydroxyphthalimide Esters: Synthesis of Congested Pyridine-Substituted Quaternary Carbons. ACS Catalysis, 2019, 9, 10142-10151.	11.2	42
20	Cooperative Au/Ag Dual-Catalyzed Cross-Dehydrogenative Biaryl Coupling: Reaction Development and Mechanistic Insight. Journal of the American Chemical Society, 2019, 141, 3187-3197.	13.7	101
21	Perfluoroalkylative pyridylation of alkenes <i>via</i> 4-cyanopyridine-boryl radicals. Chemical Science, 2019, 10, 2767-2772.	7.4	81
22	Selectivity control of Pd(PMe ₃) ₄ -catalyzed hydrogenation of internal alkynes to <i>E</i> -alkenes by reaction time and water content in formic acid. Dalton Transactions, 2019, 48, 10033-10042.	3.3	4
23	Chemoselective Boraneâ€Catalyzed Hydroarylation of 1,3â€Dienes with Phenols. Angewandte Chemie, 2019, 131, 1708-1713.	2.0	7
24	Chemoselective Boraneâ€Catalyzed Hydroarylation of 1,3â€Dienes with Phenols. Angewandte Chemie - International Edition, 2019, 58, 1694-1699.	13.8	54
25	Organocatalytic reductive coupling of aldehydes with 1,1-diarylethylenes using an <i>in situ</i> generated pyridine-boryl radical. Chemical Science, 2018, 9, 3664-3671.	7.4	56
26	Selective Câ^'N Borylation of Alkyl Amines Promoted by Lewis Base. Angewandte Chemie, 2018, 130, 15447-15451.	2.0	42
27	Selective Câ^'N Borylation of Alkyl Amines Promoted by Lewis Base. Angewandte Chemie - International Edition, 2018, 57, 15227-15231.	13.8	166
28	Combined Molecular Dynamics and Coordinate Driving Method for Automatic Reaction Pathway Search of Reactions in Solution. Journal of Chemical Theory and Computation, 2018, 14, 5787-5796.	5.3	21
29	A selenium-catalysed para-amination of phenols. Nature Communications, 2018, 9, 4293.	12.8	43
30	Organocatalytic decarboxylative alkylation of <i>N</i> -hydroxy-phthalimide esters enabled by pyridine-boryl radicals. Chemical Communications, 2018, 54, 11534-11537.	4.1	42
31	"Inverse―Frustrated Lewis Pairs: An Inverse FLP Approach to the Catalytic Metal Free Hydrogenation of Ketones. Chemistry - A European Journal, 2018, 24, 16526-16531.	3.3	23
32	Metal-Free Synthesis of C-4 Substituted Pyridine Derivatives Using Pyridine-boryl Radicals via a Radical Addition/Coupling Mechanism: A Combined Computational and Experimental Study. Journal of the American Chemical Society, 2017, 139, 3904-3910.	13.7	108
33	Automatic Reaction Pathway Search via Combined Molecular Dynamics and Coordinate Driving Method. Journal of Physical Chemistry A, 2017, 121, 1351-1361.	2.5	61
34	Understanding the polymorphism-dependent emission properties of molecular crystals using a refined QM/MM approach. Physical Chemistry Chemical Physics, 2017, 19, 17516-17520.	2.8	8
35	Rh(<scp>iii</scp>)-catalyzed double C–H activation of aldehyde hydrazones: a route for functionalized 1H-indazole synthesis. Chemical Science, 2017, 8, 1303-1308.	7.4	45
36	Visibleâ€Light Photoredox atalyzed Câ^'H Difluoroalkylation of Hydrazones through an Aminyl Radical/Polar Mechanism. Angewandte Chemie - International Edition, 2016, 55, 2939-2943.	13.8	176

GUOQIANG WANG

#	Article	IF	CITATIONS
37	Visibleâ€Light Photoredoxâ€Catalyzed Câ^'H Difluoroalkylation of Hydrazones through an Aminyl Radical/Polar Mechanism. Angewandte Chemie, 2016, 128, 2992-2996.	2.0	36
38	Thiyl-Radical-Catalyzed Photoreductive Hydrodifluoroacetamidation of Alkenes with Hantzsch Ester as a Multifunctional Reagent. ACS Catalysis, 2016, 6, 7471-7474.	11.2	45
39	Difluoroalkylation/C–H Annulation Cascade Reaction Induced by Visible-Light Photoredox Catalysis. Journal of Organic Chemistry, 2016, 81, 9992-10001.	3.2	54
40	Intermolecular C–H Quaternary Alkylation of Aniline Derivatives Induced by Visible-Light Photoredox Catalysis. Organic Letters, 2016, 18, 4538-4541.	4.6	37
41	Homolytic Cleavage of a Bâ^'B Bond by the Cooperative Catalysis of Two Lewis Bases: Computational Design and Experimental Verification. Angewandte Chemie - International Edition, 2016, 55, 5985-5989.	13.8	143
42	Homolytic Cleavage of a Bâ^'B Bond by the Cooperative Catalysis of Two Lewis Bases: Computational Design and Experimental Verification. Angewandte Chemie, 2016, 128, 6089-6093.	2.0	35
43	Hantzsch Ester as a Photosensitizer for the Visible‣ightâ€Induced Debromination of Vicinal Dibromo Compounds. Chemistry - A European Journal, 2016, 22, 9546-9550.	3.3	60