
John S Terblanche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2234512/publications.pdf Version: 2024-02-01

IOHN S TEDRIANCHE

#	Article	IF	CITATIONS
1	Physiological Diversity in Insects: Ecological and Evolutionary Contexts. Advances in Insect Physiology, 2006, 33, 50-152.	2.7	446
2	Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?. Biological Reviews, 2008, 83, 339-355.	10.4	427
3	Critical thermal limits depend on methodological context. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2935-2943.	2.6	380
4	What Can Plasticity Contribute to Insect Responses to Climate Change?. Annual Review of Entomology, 2016, 61, 433-451.	11.8	362
5	Ecologically relevant measures of tolerance to potentially lethal temperatures. Journal of Experimental Biology, 2011, 214, 3713-3725.	1.7	352
6	Macrophysiology: A Conceptual Reunification. American Naturalist, 2009, 174, 595-612.	2.1	298
7	Water loss in insects: An environmental change perspective. Journal of Insect Physiology, 2011, 57, 1070-1084.	2.0	296
8	Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Functional Ecology, 2009, 23, 133-140.	3.6	271
9	Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2016, 192, 64-78.	1.8	252
10	Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 2020, 18, 141-150.	4.0	241
11	Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Functional Ecology, 2007, 21, 282-290.	3.6	218
12	Variation in Thermal Performance among Insect Populations. Physiological and Biochemical Zoology, 2012, 85, 594-606.	1.5	148
13	Insect Rateâ€Temperature Relationships: Environmental Variation and the Metabolic Theory of Ecology. American Naturalist, 2009, 174, 819-835.	2.1	144
14	Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): Effects of age, gender and feeding status. Journal of Thermal Biology, 2009, 34, 406-414.	2.5	142
15	Testing the thermal melanism hypothesis: a macrophysiological approach. Functional Ecology, 2008, 22, 232-238.	3.6	140
16	Mass-rearing of insects for pest management: Challenges, synergies and advances from evolutionary physiology. Crop Protection, 2012, 38, 87-94.	2.1	139
17	Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera,) Tj ETQq1 1 0.7 54, 114-127.	784314 rgl 2.0	BT /Overlock 131
18	PHENOTYPIC PLASTICITY AND GEOGRAPHIC VARIATION IN THERMAL TOLERANCE AND WATER LOSS OF THE TSETSE GLOSSINA PALLIDIPES (DIPTERA: GLOSSINIDAE): IMPLICATIONS FOR DISTRIBUTION MODELLING. American Journal of Tropical Medicine and Hygiene, 2006, 74, 786-794.	1.4	126

#	Article	IF	CITATIONS
19	Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). Journal of Insect Physiology, 2010, 56, 822-830.	2.0	123

Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td

21	Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera:) Tj ETQq1 1	0.784314 2.0	rgBT /Ove 118
22	A global assessment of climatic niche shifts and human influence in insect invasions. Global Ecology and Biogeography, 2017, 26, 679-689.	5.8	113
23	Insect gas exchange patterns: a phylogenetic perspective. Journal of Experimental Biology, 2005, 208, 4495-4507.	1.7	110
24	The relative contributions of developmental plasticity and adult acclimation to physiological variation in the tsetse fly, Glossina pallidipes (Diptera, Glossinidae). Journal of Experimental Biology, 2006, 209, 1064-1073.	1.7	105
25	Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Journal of Insect Physiology, 2013, 59, 870-880.	2.0	103
26	Oxygen limitation and thermal tolerance in two terrestrial arthropod species. Journal of Experimental Biology, 2010, 213, 2209-2218.	1.7	101
27	Phenotypic plasticity of thermal tolerance contributes to the invasion potential of Mediterranean fruit flies (<i>Ceratitis capitata</i>). Ecological Entomology, 2010, 35, 565-575.	2.2	95
28	Evolutionary responses of discontinuous gas exchange in insects. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8357-8361.	7.1	92
29	Within-generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies Ceratitis capitata and Ceratitis rosa: thermal history affects short-term responses to temperature. Physiological Entomology, 2010, 35, 255-264.	1.5	92
30	Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (<i>Ceratitis capitata</i>). Entomologia Experimentalis Et Applicata, 2010, 137, 304-315.	1.4	91
31	Costs and benefits of thermal acclimation for codling moth, <i>Cydia pomonella</i> (Lepidoptera:) Tj ETQq1 1 0.74 Applications, 2011, 4, 534-544.	84314 rgB 3 . 1	T /Overloc 91
32	The effects of acclimation on thermal tolerance, desiccation resistance and metabolic rate in Chirodica chalcoptera (Coleoptera: Chrysomelidae). Journal of Insect Physiology, 2005, 51, 1013-1023.	2.0	82
33	Diurnal variation in supercooling points of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology, 2003, 49, 1049-1061.	2.0	81
34	Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. Journal of Thermal Biology, 2011, 36, 479-485.	2.5	78
35	Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. Journal of Insect Physiology, 2013, 59, 1199-1211.	2.0	76
36	An interaction switch predicts the nested architecture of mutualistic networks. Ecology Letters, 2011, 14, 797-803.	6.4	75

#	Article	IF	CITATIONS
37	Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. Journal of Insect Physiology, 2006, 52, 29-50.	2.0	73
38	Acclimation effects on critical and lethal thermal limits of workers of the Argentine ant, Linepithema humile. Journal of Insect Physiology, 2008, 54, 1008-1014.	2.0	70
39	Promises and challenges in insect–plant interactions. Entomologia Experimentalis Et Applicata, 2018, 166, 319-343.	1.4	66
40	Can respiratory physiology predict thermal niches?. Annals of the New York Academy of Sciences, 2016, 1365, 73-88.	3.8	65
41	Directional Evolution of the Slope of the Metabolic Rate–Temperature Relationship Is Correlated with Climate. Physiological and Biochemical Zoology, 2009, 82, 495-503.	1.5	64
42	Life stage-related differences in hardening and acclimation of thermal tolerance traits in the kelp fly, Paractora dreuxi (Diptera, Helcomyzidae). Journal of Insect Physiology, 2009, 55, 336-343.	2.0	61
43	Metabolic rate variation in Glossina pallidipes (Diptera: Glossinidae): gender, ageing and repeatability. Journal of Insect Physiology, 2004, 50, 419-428.	2.0	60
44	Control of discontinuous gas exchange in <i>Samia cynthia</i> : effects of atmospheric oxygen, carbon dioxide and moisture. Journal of Experimental Biology, 2008, 211, 3272-3280.	1.7	60
45	How useful are thermal vulnerability indices?. Trends in Ecology and Evolution, 2021, 36, 1000-1010.	8.7	59
46	Low-temperature tolerance of false codling moth Thaumatotibia leucotreta (Meyrick) (Lepidoptera:) Tj ETQq0 0 (0 rgBT /Ov	verlock 10 Tf 5
47	Phenotypic plasticity of gas exchange pattern and water loss in <i>Scarabaeus spretus</i> (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation. Journal of Experimental Biology, 2010, 213, 2940-2949.	1.7	57
48	Niche Overlap of Congeneric Invaders Supports a Single-Species Hypothesis and Provides Insight into Future Invasion Risk: Implications for Global Management of the Bactrocera dorsalis Complex. PLoS ONE, 2014, 9, e90121.	2.5	57
49	Predicted decrease in global climate suitability masks regional complexity of invasive fruit fly species response to climate change. Biological Invasions, 2016, 18, 1105-1119.	2.4	56
50	Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus. Malaria Journal, 2012, 11, 226.	2.3	54
51	Oxygen safety margins set thermal limits in an insect model system. Journal of Experimental Biology, 2015, 218, 1677-1685.	1.7	53
52	Drivers, impacts, mechanisms and adaptation in insect invasions. Biological Invasions, 2016, 18, 883-891.	2.4	53
53	FITNESS COSTS OF RAPID COLD-HARDENING INâ€,CERATITIS CAPITATA. Evolution; International Journal of Organic Evolution, 2012, 66, 296-304.	2.3	51
54	Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners. Frontiers in Zoology, 2016, 13, 15.	2.0	51

#	Article	IF	CITATIONS
55	Population Genetics of Ceratitis capitata in South Africa: Implications for Dispersal and Pest Management. PLoS ONE, 2013, 8, e54281.	2.5	51
56	False codling moth <i>Thaumatotibia leucotreta</i> (Lepidoptera, Tortricidae) larvae are chillâ€susceptible. Insect Science, 2012, 19, 315-328.	3.0	50
57	Predictable patterns of trait mismatches between interacting plants and insects. BMC Evolutionary Biology, 2010, 10, 204.	3.2	49
58	Low repeatability of preferred body temperature in four species of Cordylid lizards: Temporal variation and implications for adaptive significance. Evolutionary Ecology, 2007, 21, 63-79.	1.2	45
59	Effects of nutrient and water restriction on thermal tolerance: A test of mechanisms and hypotheses. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 212, 15-23.	1.8	45
60	Validating measurements of acclimation for climate change adaptation. Current Opinion in Insect Science, 2020, 41, 7-16.	4.4	44
61	Temperature-dependence of metabolic rate in Glossina morsitans morsitans (Diptera, Glossinidae) does not vary with gender, age, feeding, pregnancy or acclimation. Journal of Insect Physiology, 2005, 51, 861-870.	2.0	41
62	Geographic variation and plasticity in climate stress resistance among southern African populations of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Scientific Reports, 2018, 8, 9849.	3.3	41
63	Variation in scorpion metabolic rate and rate?temperature relationships: implications for the fundamental equation of the metabolic theory of ecology. Journal of Evolutionary Biology, 2007, 20, 1602-1612.	1.7	39
64	Complex Interactions between Temperature and Relative Humidity on Water Balance of Adult Tsetse (Glossinidae, Diptera): Implications for Climate Change. Frontiers in Physiology, 2011, 2, 74.	2.8	39
65	Learning to starve: impacts of food limitation beyond the stress period. Journal of Experimental Biology, 2017, 220, 4330-4338.	1.7	39
66	Drosophila as models to understand the adaptive process during invasion. Biological Invasions, 2016, 18, 1089-1103.	2.4	38
67	Plasticity and crossâ€ŧolerance to heterogeneous environments: divergent stress responses coâ€evolved in an African fruit fly. Journal of Evolutionary Biology, 2018, 31, 98-110.	1.7	38
68	Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta. Journal of Insect Physiology, 2013, 59, 781-794.	2.0	37
69	Deconstructing intercontinental invasion pathway hypotheses of the Mediterranean fruit fly (<i>Ceratitis capitata</i>) using a Bayesian inference approach: are port interceptions and quarantine protocols successfully preventing new invasions?. Diversity and Distributions, 2015, 21, 813-825.	4.1	37
70	Methods and approaches for the management of arthropod border incursions. Biological Invasions, 2016, 18, 1057-1075.	2.4	37
71	Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)?. Journal of Insect Physiology, 2017, 98, 1-6.	2.0	37
72	Stage-related variation in rapid cold hardening as a test of the environmental predictability hypothesis. Journal of Insect Physiology, 2007, 53, 455-462.	2.0	36

#	Article	IF	CITATIONS
73	Phenotypic Plasticity of Locomotion Performance in the Seed HarvesterMessor capensis(Formicidae). Physiological and Biochemical Zoology, 2010, 83, 519-530.	1.5	36
74	Phenotypic plasticity of desiccation resistance in <i>Clossina</i> puparia: are there ecotype constraints on acclimation responses?. Journal of Evolutionary Biology, 2009, 22, 1636-1648.	1.7	33
75	Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, <i>Schistocerca gregaria</i> . Journal of Experimental Biology, 2012, 215, 2301-2307.	1.7	33
76	Determinants of terrestrial arthropod community composition at Cape Hallett, Antarctica. Antarctic Science, 2006, 18, 303-312.	0.9	32
77	Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse Glossina pallidipes (Diptera: Glossinidae): implications for distribution modelling. American Journal of Tropical Medicine and Hygiene, 2006, 74, 786-94.	1.4	32
78	The effects of temperature, body mass and feeding on metabolic rate in the tsetse fly Clossina morsitans centralis. Physiological Entomology, 2007, 32, 175-180.	1.5	31
79	Metabolic rate in the whip-spider, Damon annulatipes (Arachnida: Amblypygi). Journal of Insect Physiology, 2004, 50, 637-645.	2.0	30
80	Evolved variation in cold tolerance among populations of <i><scp>E</scp>ldana saccharina</i> (Lepidoptera: Pyralidae) in <scp>S</scp> outh <scp>A</scp> frica. Journal of Evolutionary Biology, 2014, 27, 1149-1159.	1.7	30
81	Allometric scaling of maximum metabolic rate: the influence of temperature. Functional Ecology, 2008, 22, 616-623.	3.6	29
82	Trait means and reaction norms: the consequences of climate change/invasion interactions at the organism level. Evolutionary Ecology, 2010, 24, 1365-1380.	1.2	29
83	Desiccation tolerance as a function of age, sex, humidity and temperature in adults of the African malaria vectors Anopheles arabiensis Patton and Anopheles funestus Giles. Journal of Experimental Biology, 2014, 217, 3823-33.	1.7	29
84	Ontogenetic variation in cold tolerance plasticity in Drosophila: is the Bogert effect bogus?. Die Naturwissenschaften, 2013, 100, 281-284.	1.6	27
85	Reactive oxygen species production and discontinuous gas exchange in insects. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 893-901.	2.6	26
86	Physiological performance of field-released insects. Current Opinion in Insect Science, 2014, 4, 60-66.	4.4	26
87	Using stable isotope analysis to answer fundamental questions in invasion ecology: Progress and prospects. Methods in Ecology and Evolution, 2020, 11, 196-214.	5.2	26
88	Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta. Journal of Insect Physiology, 2015, 82, 75-84.	2.0	25
89	Critical thermal limits and their responses to acclimation in two sub-Antarctic spiders: Myro kerguelenensis and Prinerigone vagans. Polar Biology, 2007, 31, 215-220.	1.2	24
90	Extended phenotypes: buffers or amplifiers of climate change?. Trends in Ecology and Evolution, 2021, 36, 889-898.	8.7	24

#	Article	IF	CITATIONS
91	The evolution of water balance in Glossina (Diptera: Glossinidae): correlations with climate. Biology Letters, 2009, 5, 93-96.	2.3	23
92	Effects of within-generation thermal history on flight performance of <i>Ceratitis capitata</i> : colder is better. Journal of Experimental Biology, 2014, 217, 3545-56.	1.7	23
93	Host plantâ€related variation in thermal tolerance of <i><scp>E</scp>ldana saccharina</i> . Entomologia Experimentalis Et Applicata, 2014, 150, 113-122.	1.4	23
94	Detecting phylogenetic signal in mutualistic interaction networks using a Markov process model. Oikos, 2014, 123, 1250-1260.	2.7	23
95	Interactions between controlled atmospheres and low temperature tolerance: a review of biochemical mechanisms. Frontiers in Physiology, 2011, 2, 92.	2.8	22
96	The speed and metabolic cost of digesting a blood meal depends on temperature in a major disease vector. Journal of Experimental Biology, 2016, 219, 1893-902.	1.7	22
97	Dispersal propensity, but not flight performance, explains variation in dispersal ability. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160905.	2.6	22
98	Spatial scale, topography and thermoregulatory behaviour interact when modelling species' thermal niches. Ecography, 2019, 42, 376-389.	4.5	22
99	Environmental temperature alters the overall digestive energetics and differentially affects dietary protein and lipid use in a lizard. Journal of Experimental Biology, 2019, 222, .	1.7	22
100	Cuticular lipid mass and desiccation rates in Glossina pallidipes: interpopulation variation. Physiological Entomology, 2007, 32, 287-293.	1.5	21
101	Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae). Journal of Insect Physiology, 2010, 56, 513-521.	2.0	21
102	Metabolic responses of Glossina pallidipes (Diptera: Glossinidae) puparia exposed to oxygen and temperature variation: Implications for population dynamics and subterranean life. Journal of Insect Physiology, 2010, 56, 1789-1797.	2.0	21
103	A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae). Journal of Experimental Biology, 2014, 217, 3407-15.	1.7	21
104	Cold tolerance is unaffected by oxygen availability despite changes in anaerobic metabolism. Scientific Reports, 2016, 6, 32856.	3.3	20
105	Why do models of insect respiratory patterns fail?. Journal of Experimental Biology, 2018, 221, .	1.7	20
106	Factory Flies Are Not Equal to Wild Flies. Science, 2007, 317, 1678-1678.	12.6	19
107	Predicting performance and survival across topographically heterogeneous landscapes: the global pest insect <scp><i>H</i></scp> <i>elicoverpa armigera</i> (<scp>H</scp> ļbner, 1808) (<scp>L</scp> epidoptera: <scp>N</scp> octuidae). Austral Entomology, 2014, 53, 249-258.	1.4	19
108	Thermal limits to survival and activity in two life stages of false codling moth <i>Thaumatotibia leucotreta</i> (<scp>L</scp> epidoptera, <scp>T</scp> ortricidae). Physiological Entomology, 2017, 42, 379-388.	1.5	19

#	Article	IF	CITATIONS
109	Parameter landscapes unveil the bias in allometric prediction. Methods in Ecology and Evolution, 2010, 1, 69-74.	5.2	18
110	Evolution of the Mechanisms Underlying Insect Respiratory Gas Exchange. Advances in Insect Physiology, 2015, , 1-24.	2.7	18
111	Respiratory pattern transitions in three species of Glossina (Diptera, Glossinidae). Journal of Insect Physiology, 2011, 57, 433-443.	2.0	17
112	Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change. Ecological Modelling, 2019, 394, 53-65.	2.5	17
113	Gas exchange characteristics, metabolic rate and water loss of the Heelwalker, Karoophasma biedouwensis (Mantophasmatodea: Austrophasmatidae). Journal of Insect Physiology, 2006, 52, 442-449.	2.0	16
114	Transmembrane ion distribution during recovery from freezing in the woolly bear caterpillar Pyrrharctia isabella (Lepidoptera: Arctiidae). Journal of Insect Physiology, 2011, 57, 1154-1162.	2.0	16
115	Experience and Lessons from Alien and Invasive Animal Control Projects in South Africa. , 2020, , 629-663.		16
116	Strangers in a strange land: Globally unusual thermal tolerance in Collembola from the Cape Floristic Region. Functional Ecology, 2020, 34, 1601-1612.	3.6	15
117	Scaling of gas exchange cycle frequency in insects. Biology Letters, 2008, 4, 127-129.	2.3	14
118	Local adaptation for body color in Drosophila americana: commentary on Wittkopp et al Heredity, 2011, 106, 904-905.	2.6	14
119	A computational model of insect discontinuous gas exchange: A two-sensor, control systems approach. Journal of Theoretical Biology, 2015, 374, 138-151.	1.7	14
120	High metabolic and water-loss rates in caterpillar aggregations: evidence against the resource-conservation hypothesis. Journal of Experimental Biology, 2013, 216, 4321-5.	1.7	13
121	Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea:) Tj ETQq1	1 0.7843 1.7	14 rgBT /Ove
122	Impacts of environmental variability on desiccation rate, plastic responses and population dynamics of <i>Glossina pallidipes</i> . Journal of Evolutionary Biology, 2014, 27, 337-348.	1.7	12
123	Sexâ€dependent thermal history influences cold tolerance, longevity and fecundity in false codling moth <i><scp>T</scp>haumatotibia leucotreta</i> (<scp>L</scp> epidoptera: <scp>T</scp> ortricidae). Agricultural and Forest Entomology, 2018, 20, 41-50.	1.3	12
124	Oxygen limitation is not the cause of death during lethal heat exposure in an insect. Biology Letters, 2019, 15, 20180701.	2.3	12
125	The Effect of Oxygen Limitation on a Xylophagous Insect's Heat Tolerance Is Influenced by Life-Stage Through Variation in Aerobic Scope and Respiratory Anatomy. Frontiers in Physiology, 2019, 10, 1426.	2.8	12
126	Physiological traits suggest limited diapause response in false codling moth, <i>Thaumatotibia leucotreta</i> (Lepidoptera: Tortricidae). Journal of Applied Entomology, 2014, 138, 683-691.	1.8	11

#	Article	IF	CITATIONS
127	Chilling slows anaerobic metabolism to improve anoxia tolerance of insects. Metabolomics, 2016, 12, 1.	3.0	11
128	A transcriptomics assessment of oxygen-temperature interactions reveals novel candidate genes underlying variation in thermal tolerance and survival. Journal of Insect Physiology, 2018, 106, 179-188.	2.0	11
129	First Screening of Entomopathogenic Nematodes and Fungus as Biocontrol Agents against an Emerging Pest of Sugarcane, Cacosceles newmannii (Coleoptera: Cerambycidae). Insects, 2019, 10, 117.	2.2	11
130	Across-stage consequences of thermal stress have trait-specific effects and limited fitness costs in the harlequin ladybird, Harmonia axyridis. Evolutionary Ecology, 2020, 34, 555-572.	1.2	11
131	Physiological variation of insects in agricultural landscapes: potential impacts of climate change , 2015, , 92-118.		11
132	A simple breathing circuit to maintain isocapnia during measurements of the hypoxic ventilatory response. Respiratory Physiology and Neurobiology, 2002, 133, 259-270.	1.6	10
133	Metabolic responses to starvation and feeding contribute to the invasiveness of an emerging pest insect. Journal of Insect Physiology, 2021, 128, 104162.	2.0	10
134	Sexual dimorphism and physiological correlates of horn length in a South African isopod crustacean. Journal of Zoology, 2016, 300, 99-110.	1.7	9
135	Investigating population differentiation in a major African agricultural pest: evidence from geometric morphometrics and connectivity suggests high invasion potential. Molecular Ecology, 2016, 25, 3019-3032.	3.9	9
136	Interactions between developmental and adult acclimation have distinct consequences for heat tolerance and heat stress recovery. Journal of Experimental Biology, 2021, 224, .	1.7	9
137	The acute hypoxic ventilatory response: Testing the adaptive significance in human populations. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2005, 140, 349-362.	1.8	8
138	Direct and indirect effects of development temperature on adult water balance traits of Eldana saccharina (Lepidoptera: Pyralidae). Journal of Insect Physiology, 2014, 68, 69-75.	2.0	8
139	Exploring thermal flight responses as predictors of flight ability and geographic range size in Drosophila. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 236, 110532.	1.8	7
140	Cold treatment enhances lowâ€ŧemperature flight performance in false codling moth, <i>Thaumatotibia leucotreta</i> (Lepidoptera: Tortricidae). Agricultural and Forest Entomology, 2019, 21, 243-251.	1.3	7
141	Contaminant organisms recorded on plant product imports to South Africa 1994–2019. Scientific Data, 2021, 8, 83.	5.3	7
142	Understanding costs and benefits of thermal plasticity for pest management: insights from the integration of laboratory, semi-field and field assessments of <i>Ceratitis capitata</i> (Diptera:) Tj ETQq0 0 0 rgB	T Qv erloo	ck 1 0 Tf 50 1
143	Measurement reliability of highly variable physiological responses to experimentally-manipulated gas fractions. Physiological Measurement, 2004, 25, 1189-1197.	2.1	6

¹⁴⁴ Variation of foraging rate and wing loading, but not resting metabolic rate scaling, of insect pollinators. Die Naturwissenschaften, 2010, 97, 775-780.

1.6 6

3

#	Article	IF	CITATIONS
145	Limited plasticity of low temperature tolerance in an Australian cantharid beetle <i>Chauliognathus lugubris</i> . Physiological Entomology, 2011, 36, 385-391.	1.5	6
146	The metabolic costs of sexual signalling in the chirping katydid <i>Plangia graminea</i> (Serville) (Orthoptera: Tettigoniidae) are context dependent: cumulative costs add up fast. Journal of Experimental Biology, 2017, 220, 4440-4449.	1.7	6
147	Population dynamics of Eldana saccharina Walker (Lepidoptera: Pyralidae): application of a biophysical model to understand phenological variation in an agricultural pest. Bulletin of Entomological Research, 2018, 108, 283-294.	1.0	6
148	Water deprivation drives intraspecific variability in lizard heat tolerance. Basic and Applied Ecology, 2020, 48, 37-51.	2.7	6
149	An unusually diverse genus of Collembola in the Cape Floristic Region characterised by substantial desiccation tolerance. Oecologia, 2021, 195, 873-885.	2.0	6
150	Using µCT in live larvae of a large wood-boring beetle to study tracheal oxygen supply during development. Journal of Insect Physiology, 2021, 130, 104199.	2.0	6
151	Comparative demography of Bactrocera dorsalis (Hendel) and Ceratitis capitata (Wiedemann) (Diptera:) Tj ETQq1	1 0.7843 1.0	14 rgBT /O∨
152	Molecular and physiological insights into the potential efficacy of CO 2 -augmented postharvest cold treatments for false codling moth. Postharvest Biology and Technology, 2017, 132, 109-118.	6.0	4
153	Loss of ion homeostasis is not the cause of chill coma or impaired dispersal in false codling moth Thaumatotibia leucotreta (Lepidoptera: Tortricidae). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 229, 40-44.	1.8	4
154	Lowâ€ŧemperature physiology of climatically distinct south African populations of the biological control agent Neochetina eichhorniae. Ecological Entomology, 2021, 46, 138-141.	2.2	4
155	Host range determination in a novel outbreak pest of sugarcane, <i>Cacosceles newmannii</i> (Coleoptera: Cerambycidae, Prioninae), inferred from stable isotopes. Agricultural and Forest Entomology, 2021, 23, 378-387.	1.3	4
156	Divergent thermal specialisation of two South African entomopathogenic nematodes. PeerJ, 2015, 3, e1023.	2.0	4
157	The Addition of Sterols and Cryoprotectants to Optimize a Diet Developed for Eldana saccharina Walker (Lepidoptera: Pyralidae) Using the Carcass Milling Technique. Insects, 2022, 13, 314.	2.2	4
158	Population structure of the invasive ambrosia beetle, Euwallacea fornicatus, indicates multiple introductions into South Africa. Biological Invasions, 2022, 24, 2301-2312.	2.4	4
159	A synthesis for managing invasions and pest risks simultaneously for tephritid fruit flies in South Africa. Entomologia Experimentalis Et Applicata, 2018, 166, 344-356.	1.4	3
160	Geographic variation in acclimation responses of thermal tolerance in South African diving beetles (Dytiscidae: Coleoptera). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2021, 257, 110955.	1.8	3
161	Consequences of Thermal Variation during Development and Transport on Flight and Low-Temperature Performance in False Codling Moth (Thaumatotibia leucotreta): Fine-Tuning Protocols for Improved Field Performance in a Sterile Insect Programme. Insects, 2022, 13, 315.	2.2	3

#	Article	IF	CITATIONS
163	Introduction to the Special Issue "What sets the limit? How thermal limits, performance and preference in ectotherms are influenced by water or energy balance― Journal of Thermal Biology, 2015, 54, 1-2.	2.5	2
164	The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper, Paracinema tricolor. Journal of Experimental Biology, 2016, 219, 2423-5.	1.7	2
165	A computing platform to map ecological metabolism by integrating functional mapping and the metabolic theory of ecology. Briefings in Bioinformatics, 2017, 18, 137-144.	6.5	2
166	DNA barcoding for bio-surveillance of emerging pests and species identification in Afrotropical Prioninae (Coleoptera, Cerambycidae). Biodiversity Data Journal, 2021, 9, e64499.	0.8	2
167	Three new Drosophilidae species records for South Africa. Bothalia, 2019, 49, .	0.3	2
168	Harnessing thermal plasticity to enhance the performance of mass-reared insects: opportunities and challenges. Bulletin of Entomological Research, 2022, , 1-10.	1.0	2
169	Arthropods on imported plant products: Volumes predict general trends while contextual details enhance predictive power. Ecological Applications, 2022, , e2554.	3.8	1
170	Rapid cold-hardening in Zaprionus vittiger (Coquillett) (Diptera: Drosophilidae). Cryo-Letters, 2010, 31, 504-12.	0.3	1
171	Title is missing!. Journal of Thermal Biology, 2010, 35, 254.	2.5	0
172	Respiration, thermogenesis, and thermoregulation of Victoria cruziana flowers. Aquatic Botany, 2017, 138, 37-44.	1.6	0
173	X-ray micro-tomographic data of live larvae of the beetle Cacosceles newmannii. GigaByte, 0, 2021, 1-8.	0.0	0
174	A preliminary assessment of the physiological and morphological correlates of beetle aggression in an emerging sugarcane pest, Cacosceles newmannii (Thomson, 1877) (Coleoptera: Cerambycidae). African Entomology, 0, 30, .	0.6	0
175	Dietary salt supplementation adversely affects thermal acclimation responses of flight ability in Drosophila melanogaster. Journal of Insect Physiology, 2022, 140, 104403.	2.0	0