
Kathryn F Medler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2233749/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Taste Receptor Signaling. Handbook of Experimental Pharmacology, 2021, , 1.	1.8	5
2	Bitter, sweet, and umami signaling in taste cells: it's not as simple as we thought. Current Opinion in Physiology, 2021, 20, 159-164.	1.8	7
3	Cholesterol is required for transcriptional repression by BASP1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
4	Differential Effects of Diet and Weight on Taste Responses in Dietâ€Induced Obese Mice. Obesity, 2020, 28, 284-292.	3.0	20
5	A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLoS Genetics, 2020, 16, e1008925.	3.5	32
6	The WT1–BASP1 complex is required to maintain the differentiated state of taste receptor cells. Life Science Alliance, 2019, 2, e201800287.	2.8	11
7	TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E772-E781.	7.1	100
8	BASP1 interacts with oestrogen receptor $\hat{I}\pm$ and modifies the tamoxifen response. Cell Death and Disease, 2017, 8, e2771-e2771.	6.3	26
9	AP1 transcription factors are required to maintain the peripheral taste system. Cell Death and Disease, 2016, 7, e2433-e2433.	6.3	10
10	Regulation of AURORA B function by mitotic checkpoint protein MAD2. Cell Cycle, 2016, 15, 2196-2201.	2.6	8
11	Calcium signaling in taste cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2025-2032.	4.1	15
12	Honing in on the ATP Release Channel in Taste Cells:. Chemical Senses, 2015, 40, 449-451.	2.0	3
13	Taste Cells and Calcium Signaling. Food and Nutritional Components in Focus, 2015, , 413-430.	0.1	0
14	WT1 interacts with MAD2 and regulates mitotic checkpoint function. Nature Communications, 2014, 5, 4903.	12.8	20
15	WT1 regulates the development of the posterior taste field. Development (Cambridge), 2014, 141, 2271-2278.	2.5	18
16	Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells. PLoS ONE, 2013, 8, e68174.	2.5	15
17	Diet-Induced Obesity Reduces the Responsiveness of the Peripheral Taste Receptor Cells. PLoS ONE, 2013, 8, e79403.	2.5	67
18	Repression of Transcription by WT1-BASP1 Requires the Myristoylation of BASP1 and the PIP2-Dependent Recruitment of Histone Deacetylase. Cell Reports, 2012, 2, 462-469.	6.4	69

KATHRYN F MEDLER

#	Article	IF	CITATIONS
19	Multiple Roles for TRPs in the Taste System: Not Your Typical TRPs. Advances in Experimental Medicine and Biology, 2011, 704, 831-846.	1.6	7
20	WT1 and its transcriptional cofactor BASP1 redirect the differentiation pathway of an established blood cell line. Biochemical Journal, 2011, 435, 113-125.	3.7	36
21	Expression of Calcium Binding Proteins in Mouse Type II Taste Cells. Journal of Histochemistry and Cytochemistry, 2011, 59, 530-539.	2.5	10
22	Ryanodine receptors selectively contribute to the formation of tasteâ€evoked calcium signals in mouse taste cells. European Journal of Neuroscience, 2010, 32, 1825-1835.	2.6	16
23	Sodium/Calcium Exchangers Selectively Regulate Calcium Signaling in Mouse Taste Receptor Cells. Journal of Neurophysiology, 2010, 104, 529-538.	1.8	18
24	Calcium Signaling in Taste Cells: Regulation Required. Chemical Senses, 2010, 35, 753-765.	2.0	28
25	Expression of GABAergic Receptors in Mouse Taste Receptor Cells. PLoS ONE, 2010, 5, e13639.	2.5	22
26	Sodium–calcium exchangers contribute to the regulation of cytosolic calcium levels in mouse taste cells. Journal of Physiology, 2009, 587, 4077-4089.	2.9	21
27	Evidence for Two Populations of Bitter Responsive Taste Cells in Mice. Journal of Neurophysiology, 2008, 99, 1503-1514.	1.8	48
28	Mitochondrial Calcium Buffering Contributes to the Maintenance of Basal Calcium Levels in Mouse Taste Cells. Journal of Neurophysiology, 2008, 100, 2177-2191.	1.8	35
29	Signaling Mechanisms Controlling Taste Cell Function. Critical Reviews in Eukaryotic Gene Expression, 2008, 18, 125-137.	0.9	11
30	Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biology, 2006, 4, 7.	3.8	212
31	Transduction Mechanisms in Taste Cells. , 2005, , 153-177.		5
32	Electrophysiological Characterization of Voltage-Gated Currents in Defined Taste Cell Types of Mice. Journal of Neuroscience, 2003, 23, 2608-2617.	3.6	130
33	Mitochondrial Ca ²⁺ Buffering Regulates Synaptic Transmission Between Retinal Amacrine Cells. Journal of Neurophysiology, 2002, 87, 1426-1439.	1.8	82
34	Group I metabotropic glutamate receptors are expressed in the chicken retina and by cultured retinal amacrine cells. Journal of Neurochemistry, 2001, 77, 452-465.	3.9	24
35	Sex differences in plasma corticosterone levels in alligator (Alligator mississippiensis) embryos. , 1998, 280, 238-244.		21
36	Metabotropic glutamate receptor expression in olfactory receptor neurons from the channel catfish,Ictalurus punctatus. , 1998, 35, 94-104.		13

KATHRYN F MEDLER

#	Article	IF	CITATIONS
37	Odorant receptor gene expression in catfish taste tissue. NeuroReport, 1998, 9, 4103-4107.	1.2	2
38	Sex differences in plasma corticosterone levels in alligator (Alligator mississippiensis) embryos. The Journal of Experimental Zoology, 1998, 280, 238-244.	1.4	1
39	Metabotropic glutamate receptor expression in olfactory receptor neurons from the channel catfish, Ictalurus punctatus. Journal of Neurobiology, 1998, 35, 94-104.	3.6	1
40	G-protein βγ Subunit Genes Expressed in Olfactory Receptor Neurons. Chemical Senses, 1997, 22, 587-592.	2.0	4
41	Protein kinase C and receptor kinase gene expression in olfactory receptor neurons. , 1997, 33, 387-394.		15
42	A regulator of G-protein signaling in olfactory receptor neurons. NeuroReport, 1996, 7, 2941-2944.	1.2	16