
Hui-Xia Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2232112/publications.pdf Version: 2024-02-01

Ηυμ-Χιλ Ουο

#	Article	IF	CITATIONS
1	Entropy-Assisted High-Entropy Oxide with a Spinel Structure toward High-Temperature Infrared Radiation Materials. ACS Applied Materials & Interfaces, 2022, 14, 1950-1960.	8.0	21
2	Highly Facile Strategy for Detecting D ₂ 0 in H ₂ 0 by Porphyrin-Based Luminescent Probes. Analytical Chemistry, 2022, 94, 8426-8432.	6.5	15
3	Toward high-temperature thermal tolerance in solar selective absorber coatings: choosing high entropy ceramic HfNbTaTiZrN. Journal of Materials Chemistry A, 2021, 9, 21270-21280.	10.3	24
4	Scalable and highly efficient high temperature solar absorber coatings based on high entropy alloy nitride AlCrTaTiZrN with different antireflection layers. Journal of Materials Chemistry A, 2021, 9, 6413-6422.	10.3	32
5	Scalable and Ultrathin Highâ€Temperature Solar Selective Absorbing Coatings Based on the Highâ€Entropy Nanoceramic AlCrWTaNbTiN with High Photothermal Conversion Efficiency. Solar Rrl, 2021, 5, 2000790.	5.8	23
6	Highly Enhanced Thermal Robustness and Photothermal Conversion Efficiency of Solar-Selective Absorbers Enabled by High-Entropy Alloy Nitride MoTaTiCrN Nanofilms. ACS Applied Materials & Interfaces, 2021, 13, 16987-16996.	8.0	26
7	Double-layer solar absorber coating based on high entropy ceramic AlCrMoTaTiN: Structure, optical properties and failure mechanism. Surfaces and Interfaces, 2021, 24, 101062.	3.0	4
8	MnO ₂ Nanospheres Assisted by Cysteine Combined with MnO ₂ Nanosheets as a Fluorescence Resonance Energy Transfer System for "Switch-on―Detection of Glutathione. Analytical Chemistry, 2021, 93, 9621-9627.	6.5	51
9	A novel multilayer high temperature colored solar absorber coating based on high-entropy alloy MoNbHfZrTi: Optimized preparation and chromaticity investigation. Solar Energy Materials and Solar Cells, 2020, 209, 110444.	6.2	42
10	Structure, thermal stability and optical simulation of ZrB2 based spectrally selective solar absorber coatings. Solar Energy Materials and Solar Cells, 2019, 193, 178-183.	6.2	46
11	Investigation of photoinduced electron transfer on TiO2 nanowire arrays/porphyrin composite via scanning electrochemical microscopy. RSC Advances, 2015, 5, 56697-56703.	3.6	4
12	Simultaneous determination of 5-hydroxytryptamine and dopamine using ionic liquid functionalized graphene. Ionics, 2015, 21, 1111-1119.	2.4	20
13	A novel electrocatalytic platform for separation of the overlapping voltammetric responses of AA, DA and UA. RSC Advances, 2014, 4, 5849.	3.6	17
14	A new electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt–Pd nanoparticles supported by graphene–multiwalled carbon nanotube composite. Biosensors and Bioelectronics, 2014, 58, 85-91.	10.1	74