
Sang Hyoung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/223207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrostatic Pressure Controls Angiogenesis Through Endothelial YAP1 During Lung Regeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, 823642.	4.1	3
2	S-SCAM inhibits Axin-dependent synaptic function of GSK3Î ² in a sex-dependent manner. Scientific Reports, 2022, 12, 4090.	3.3	1
3	Aberrant expression of S-SCAM causes the loss of GABAergic synapses in hippocampal neurons. Scientific Reports, 2020, 10, 83.	3.3	10
4	Targeted knockout of a chemokine-like gene increases anxiety and fear responses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1041-E1050.	7.1	39
5	Reciprocal control of excitatory synapse numbers by Wnt and Wnt inhibitor PRR7 secreted on exosomes. Nature Communications, 2018, 9, 3434.	12.8	42
6	Ottogi Inhibits Wnt/β-catenin Signaling by Regulating Cell Membrane Trafficking of Frizzled8. Scientific Reports, 2017, 7, 13278.	3.3	3
7	S-SCAM, A Rare Copy Number Variation Gene, Induces Schizophrenia-Related Endophenotypes in Transgenic Mouse Model. Journal of Neuroscience, 2015, 35, 1892-1904.	3.6	19
8	SynPAnal: Software for Rapid Quantification of the Density and Intensity of Protein Puncta from Fluorescence Microscopy Images of Neurons. PLoS ONE, 2014, 9, e115298.	2.5	49
9	Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors. Channels, 2012, 6, 393-397.	2.8	9
10	GKAP orchestrates activity-dependent postsynaptic protein remodeling and homeostatic scaling. Nature Neuroscience, 2012, 15, 1655-1666.	14.8	119
11	S-SCAM/MAGI-2 Is an Essential Synaptic Scaffolding Molecule for the GluA2-Containing Maintenance Pool of AMPA Receptors. Journal of Neuroscience, 2012, 32, 6967-6980.	3.6	50
12	Plk2 attachment to NSF induces homeostatic removal of GluA2 during chronic overexcitation. Nature Neuroscience, 2010, 13, 1199-1207.	14.8	58
13	Molecular determinants for the interaction between AMPA receptors and the clathrin adaptor complex AP-2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2991-2996.	7.1	77
14	The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6418-6423.	7.1	266
15	Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons. Journal of Neurochemistry, 2007, 100, 118-131.	3.9	75
16	Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO Journal, 2004, 23, 1040-1050.	7.8	267
17	Subunit Rules Governing the Sorting of Internalized AMPA Receptors in Hippocampal Neurons. Neuron, 2004, 43, 221-236.	8.1	241
18	AMPA receptor trafficking and synaptic plasticity: major unanswered questions. Neuroscience Research, 2003, 46, 127-134.	1.9	69

SANG HYOUNG LEE

#	Article	IF	CITATIONS
19	Identification of Calmodulin Isoform-specific Binding Peptides from a Phage-displayed Random 22-mer Peptide Library. Journal of Biological Chemistry, 2002, 277, 21630-21638.	3.4	29
20	Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of CluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD. Neuron, 2002, 36, 661-674.	8.1	390
21	Mlo, a Modulator of Plant Defense and Cell Death, Is a Novel Calmodulin-binding Protein. Journal of Biological Chemistry, 2002, 277, 19304-19314.	3.4	130
22	Biochemical and morphological characterization of an intracellular membrane compartment containing AMPA receptors. Neuropharmacology, 2001, 41, 680-692.	4.1	59
23	AMPA Receptor Trafficking and the Control of Synaptic Transmission. Cell, 2001, 105, 825-828.	28.9	188
24	Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochemical Journal, 2000, 350, 299-306.	3.7	77
25	Growth of the NMDA receptor industrial complex. Nature Neuroscience, 2000, 3, 633-635.	14.8	46
26	Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neuroscience, 2000, 3, 1282-1290.	14.8	523
27	Development of neuron–neuron synapses. Current Opinion in Neurobiology, 2000, 10, 125-131.	4.2	101
28	Competitive binding of calmodulin isoforms to calmodulin-binding proteins: implication for the function of calmodulin isoforms in plants. BBA - Proteins and Proteomics, 1999, 1433, 56-67.	2.1	44
29	A new class II rice chitinase, Rcht2, whose induction by fungal elicitor is abolished by protein phosphatase 1 and 2A inhibitor. Plant Molecular Biology, 1998, 37, 523-534.	3.9	56
30	Reciprocal Regulation of Mammalian Nitric Oxide Synthase and Calcineurin by Plant Calmodulin Isoformsâ€. Biochemistry, 1998, 37, 15593-15597.	2.5	65
31	Differential Activation of NAD Kinase by Plant Calmodulin Isoforms THE CRITICAL ROLE OF DOMAIN I. Journal of Biological Chemistry, 1997, 272, 9252-9259.	3.4	68
32	Identification of a Novel Divergent Calmodulin Isoform from Soybean Which Has Differential Ability to Activate Calmodulin-dependent Enzymes. Journal of Biological Chemistry, 1995, 270, 21806-21812.	3.4	139