Sang Hyoung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/223207/publications.pdf

Version: 2024-02-01

414414 218677 3,312 32 26 citations h-index papers

32 g-index 32 32 32 3580 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Distinct molecular mechanisms and divergent endocytotic pathways of AMPA receptor internalization. Nature Neuroscience, 2000, 3, 1282-1290.	14.8	523
2	Clathrin Adaptor AP2 and NSF Interact with Overlapping Sites of GluR2 and Play Distinct Roles in AMPA Receptor Trafficking and Hippocampal LTD. Neuron, 2002, 36, 661-674.	8.1	390
3	Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO Journal, 2004, 23, 1040-1050.	7.8	267
4	The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6418-6423.	7.1	266
5	Subunit Rules Governing the Sorting of Internalized AMPA Receptors in Hippocampal Neurons. Neuron, 2004, 43, 221-236.	8.1	241
6	AMPA Receptor Trafficking and the Control of Synaptic Transmission. Cell, 2001, 105, 825-828.	28.9	188
7	Identification of a Novel Divergent Calmodulin Isoform from Soybean Which Has Differential Ability to Activate Calmodulin-dependent Enzymes. Journal of Biological Chemistry, 1995, 270, 21806-21812.	3.4	139
8	Mlo, a Modulator of Plant Defense and Cell Death, Is a Novel Calmodulin-binding Protein. Journal of Biological Chemistry, 2002, 277, 19304-19314.	3.4	130
9	GKAP orchestrates activity-dependent postsynaptic protein remodeling and homeostatic scaling. Nature Neuroscience, 2012, 15, 1655-1666.	14.8	119
10	Development of neuron–neuron synapses. Current Opinion in Neurobiology, 2000, 10, 125-131.	4.2	101
11	Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochemical Journal, 2000, 350, 299-306.	3.7	77
12	Molecular determinants for the interaction between AMPA receptors and the clathrin adaptor complex AP-2. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2991-2996.	7.1	77
13	Differential roles of Rap1 and Rap2 small GTPases in neurite retraction and synapse elimination in hippocampal spiny neurons. Journal of Neurochemistry, 2007, 100, 118-131.	3.9	75
14	AMPA receptor trafficking and synaptic plasticity: major unanswered questions. Neuroscience Research, 2003, 46, 127-134.	1.9	69
15	Differential Activation of NAD Kinase by Plant Calmodulin Isoforms THE CRITICAL ROLE OF DOMAIN I. Journal of Biological Chemistry, 1997, 272, 9252-9259.	3.4	68
16	Reciprocal Regulation of Mammalian Nitric Oxide Synthase and Calcineurin by Plant Calmodulin Isoformsâ€. Biochemistry, 1998, 37, 15593-15597.	2.5	65
17	Biochemical and morphological characterization of an intracellular membrane compartment containing AMPA receptors. Neuropharmacology, 2001, 41, 680-692.	4.1	59
18	Plk2 attachment to NSF induces homeostatic removal of GluA2 during chronic overexcitation. Nature Neuroscience, 2010, 13, 1199-1207.	14.8	58

#	Article	IF	CITATIONS
19	A new class II rice chitinase, Rcht2, whose induction by fungal elicitor is abolished by protein phosphatase 1 and 2A inhibitor. Plant Molecular Biology, 1998, 37, 523-534.	3.9	56
20	S-SCAM/MAGI-2 Is an Essential Synaptic Scaffolding Molecule for the GluA2-Containing Maintenance Pool of AMPA Receptors. Journal of Neuroscience, 2012, 32, 6967-6980.	3 . 6	50
21	SynPAnal: Software for Rapid Quantification of the Density and Intensity of Protein Puncta from Fluorescence Microscopy Images of Neurons. PLoS ONE, 2014, 9, e115298.	2.5	49
22	Growth of the NMDA receptor industrial complex. Nature Neuroscience, 2000, 3, 633-635.	14.8	46
23	Competitive binding of calmodulin isoforms to calmodulin-binding proteins: implication for the function of calmodulin isoforms in plants. BBA - Proteins and Proteomics, 1999, 1433, 56-67.	2.1	44
24	Reciprocal control of excitatory synapse numbers by Wnt and Wnt inhibitor PRR7 secreted on exosomes. Nature Communications, 2018, 9, 3434.	12.8	42
25	Targeted knockout of a chemokine-like gene increases anxiety and fear responses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1041-E1050.	7.1	39
26	Identification of Calmodulin Isoform-specific Binding Peptides from a Phage-displayed Random 22-mer Peptide Library. Journal of Biological Chemistry, 2002, 277, 21630-21638.	3.4	29
27	S-SCAM, A Rare Copy Number Variation Gene, Induces Schizophrenia-Related Endophenotypes in Transgenic Mouse Model. Journal of Neuroscience, 2015, 35, 1892-1904.	3. 6	19
28	Aberrant expression of S-SCAM causes the loss of GABAergic synapses in hippocampal neurons. Scientific Reports, 2020, 10, 83.	3.3	10
29	Role of TARP interaction in S-SCAM-mediated regulation of AMPA receptors. Channels, 2012, 6, 393-397.	2.8	9
30	Ottogi Inhibits Wnt \hat{I}^2 -catenin Signaling by Regulating Cell Membrane Trafficking of Frizzled8. Scientific Reports, 2017, 7, 13278.	3.3	3
31	Hydrostatic Pressure Controls Angiogenesis Through Endothelial YAP1 During Lung Regeneration. Frontiers in Bioengineering and Biotechnology, 2022, 10, 823642.	4.1	3
32	S-SCAM inhibits Axin-dependent synaptic function of GSK3 \hat{l}^2 in a sex-dependent manner. Scientific Reports, 2022, 12, 4090.	3.3	1