Hilda LomelÃ-

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2231159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ZMIZ proteins: partners in transcriptional regulation and risk factors for human disease. Journal of Molecular Medicine, 2022, 100, 973-983.	3.9	12
2	zmiz1a zebrafish mutants have defective erythropoiesis, altered expression of autophagy genes, and a deficient response to vitamin D. Life Sciences, 2021, 284, 119900.	4.3	9
3	Notch signaling and the emergence of hematopoietic stem cells. Developmental Dynamics, 2020, 249, 1302-1317.	1.8	13
4	Protein Purification and Western Blot Detection from Single Zebrafish Embryo. Zebrafish, 2019, 16, 505-507.	1.1	12
5	NADPH-Oxidase-derived reactive oxygen species are required for cytoskeletal organization, proper localization of E-cadherin and cell motility during zebrafish epiboly. Free Radical Biology and Medicine, 2019, 130, 82-98.	2.9	8
6	smarce1 mutants have a defective endocardium and an increased expression of cardiac transcription factors in zebrafish. Scientific Reports, 2018, 8, 15369.	3.3	9
7	RhoA/ROCK pathway activity is essential for the correct localization of the germ plasm mRNAs in zebrafish embryos. Developmental Biology, 2017, 421, 27-42.	2.0	21
8	The developmental and pathogenic roles of BAF57, a special subunit of the BAF chromatinâ€remodeling complex. FEBS Letters, 2016, 590, 1555-1569.	2.8	15
9	PIAS-like protein Zimp7 is required for the restriction of the zebrafish organizer and mesoderm development. Developmental Biology, 2015, 403, 89-100.	2.0	18
10	Spatial and temporal expression of zebrafish glutathione peroxidase 4 a and b genes during early embryo development. Gene Expression Patterns, 2015, 19, 98-107.	0.8	10
11	Cell Proliferation Patterns in Early Zebrafish Development. Anatomical Record, 2013, 296, 759-773.	1.4	28
12	Dynamics of expression of ARID1A and ARID1B subunits in mouse embryos and in cells during the cell cycle. Cell and Tissue Research, 2011, 345, 137-148.	2.9	65
13	Emerging roles of the SUMO pathway in development. Cellular and Molecular Life Sciences, 2011, 68, 4045-4064.	5.4	68
14	Expression of LPP3 in Bergmann glia is required for proper cerebellar sphingosineâ€1â€phosphate metabolism/signaling and development. Glia, 2011, 59, 577-589.	4.9	30
15	Sexually dimorphic gene expression of the Zimp7 and Zimp10 genes in embryonic gonads. Gene Expression Patterns, 2010, 10, 16-23.	0.8	8
16	Epiblast-specific Snai1 deletion results in embryonic lethality due to multiple vascular defects. BMC Research Notes, 2009, 2, 22.	1.4	26
17	Spatial and temporal expression of Zimp7 and Zimp10 PIAS-like proteins in the developing mouse embryo. Gene Expression Patterns, 2008, 8, 206-213.	0.8	18
18	Phenotypic analyses of mouse embryos with ubiquitous expression of Oct4: Effects on mid-hindbrain patterning and gene expression. Developmental Dynamics, 2005, 232, 180-190.	1.8	26

Hilda LomelÃ-

#	Article	IF	CITATIONS
19	Ectopic expression of KitD814Yin spermatids of transgenic mice, interferes with sperm morphogenesis. Developmental Dynamics, 2005, 233, 29-40.	1.8	19
20	Oct4 is required for primordial germ cell survival. EMBO Reports, 2004, 5, 1078-1083.	4.5	513
21	Imaging filopodia dynamics in the mouse blastocyst. Developmental Biology, 2004, 265, 75-89.	2.0	80
22	Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development (Cambridge), 2003, 130, 1691-1700.	2.5	218
23	Targeted insertion of Cre recombinase into the TNAP gene: Excision in primordial germ cells. Genesis, 2000, 26, 116-117.	1.6	151
24	Z/AP, a Double Reporter for Cre-Mediated Recombination. Developmental Biology, 1999, 208, 281-292.	2.0	515
25	Localisation of inositol trisphosphate and ryanodine receptors during mouse spermatogenesis: possible functional implications. Zygote, 1998, 6, 159-172.	1.1	55
26	Molecular biology of glutamate receptors. Progress in Neurobiology, 1994, 42, 353-357.	5.7	124
27	High-affinity kainate a domoate receptors in rat brain. FEBS Letters, 1992, 307, 139-143.	2.8	128
28	Exponential Amplification of Recombinant- RNA Hybridization Probes. Bio/technology, 1988, 6, 1197-1202.	1.5	119
29	Plasmid vector pBR322 and its special-purpose derivatives — a review. Gene, 1986, 50, 3-40.	2.2	321