Xavier F Figueroa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2230182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Editorial: Cell Communication in Vascular Biology, Volume II. Frontiers in Physiology, 2022, 13, .	2.8	2
2	Novel Pannexin-1-Coupled Signaling Cascade Involved in the Control of Endothelial Cell Function and NO-Dependent Relaxation. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-16.	4.0	9
3	Editorial: Cell Communication in Vascular Biology. Frontiers in Physiology, 2021, 12, 656959.	2.8	Ο
4	Design, characterization and quantum chemical computations of a novel series of pyrazoles derivatives with potential anti-proinflammatory response. Arabian Journal of Chemistry, 2020, 13, 6412-6424.	4.9	3
5	Function of P2X4 Receptors Is Directly Modulated by a 1:1 Stoichiometric Interaction With 5-HT3A Receptors. Frontiers in Cellular Neuroscience, 2020, 14, 106.	3.7	3
6	CGRP signalling inhibits NO production through pannexin-1 channel activation in endothelial cells. Scientific Reports, 2019, 9, 7932.	3.3	19
7	Critical contribution of Na ⁺ a ²⁺ exchanger to the Ca ²⁺ â€mediated vasodilation activated in endothelial cells of resistance arteries. FASEB Journal, 2018, 32, 2137-2147.	0.5	26
8	Connexins and Pannexins in Vascular Function and Disease. International Journal of Molecular Sciences, 2018, 19, 1663.	4.1	42
9	Pannexin channel and connexin hemichannel expression in vascular function and inflammation. BMC Cell Biology, 2017, 18, 2.	3.0	54
10	Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling. Frontiers in Cellular Neuroscience, 2015, 9, 59.	3.7	62
11	Functional Role of Connexins and Pannexins in the Interaction Between Vascular and Nervous System. Journal of Cellular Physiology, 2014, 229, 1336-1345.	4.1	31
12	CGRP release from perivascular capsaicinâ€sensitive sensory nerves regulates vascular function through pannexinâ€1 channel opening (1075.4). FASEB Journal, 2014, 28, 1075.4.	0.5	0
13	Coordinated Endothelial Nitric Oxide Synthase Activation by Translocation and Phosphorylation Determines Flow-Induced Nitric Oxide Production in Resistance Vessels. Journal of Vascular Research, 2013, 50, 498-511.	1.4	26
14	Lipopolysaccharide induces a fibroticâ€like phenotype in endothelial cells. Journal of Cellular and Molecular Medicine, 2013, 17, 800-814.	3.6	158
15	Diffusion of nitric oxide across cell membranes of the vascular wall requires specific connexin-based channels. Neuropharmacology, 2013, 75, 471-478.	4.1	75
16	De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16229-16234.	7.1	101
17	Ca2+-activated K+ channels of small and intermediate conductance control eNOS activation through NAD(P)H oxidase. Free Radical Biology and Medicine, 2012, 52, 860-870.	2.9	20
18	Hemichannels in the Neurovascular Unit and White Matter Under Normal and Inflamed Conditions. CNS and Neurological Disorders - Drug Targets, 2011, 10, 404-414.	1.4	39

Xavier F Figueroa

#	Article	IF	CITATIONS
19	NO production and eNOS phosphorylation induced by epinephrine through the activation of β-adrenoceptors. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H134-H143.	3.2	56
20	Gap Junctions in the Control of Vascular Function. Antioxidants and Redox Signaling, 2009, 11, 251-266.	5.4	248
21	Dissection of two Cx37-independent conducted vasodilator mechanisms by deletion of Cx40: electrotonic versus regenerative conduction. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2001-H2007.	3.2	73
22	Reply to "Letter to the editor: â€~Are voltage-dependent ion channels involved in the endothelial cell control of vasomotor tone?'― American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H2008-H2008.	3.2	1
23	Are voltage-dependent ion channels involved in the endothelial cell control of vasomotor tone?. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1371-H1383.	3.2	79
24	Vascular Gap Junctions in Hypertension. Hypertension, 2006, 48, 804-811.	2.7	65
25	Voltageâ€dependent Na + channels are essential for the propagation of electrically induced vasodilation by the endothelium FASEB Journal, 2006, 20, A277.	0.5	0
26	Ca _v 3.2 Tâ€ŧype Ca++ channels trigger the endotheliumâ€dependent vasodilator signals activated by electrical stimulation FASEB Journal, 2006, 20, A277.	0.5	0
27	Connexins: Gaps in Our Knowledge of Vascular Function. Physiology, 2004, 19, 277-284.	3.1	111
28	Histamine reduces gap junctional communication of human tonsil high endothelial cells in culture. Microvascular Research, 2004, 68, 247-257.	2.5	13
29	Central Role of Connexin40 in the Propagation of Electrically Activated Vasodilation in Mouse Cremasteric Arterioles In Vivo. Circulation Research, 2003, 92, 793-800.	4.5	153
30	Achâ€induced endothelial NO synthase translocation, NO release and vasodilatation in the hamster microcirculation <i>in vivo</i> . Journal of Physiology, 2002, 544, 883-896.	2.9	37
31	Clonidineâ€induced nitric oxideâ€dependent vasorelaxation mediated by endothelial α ₂ â€adrenoceptor activation. British Journal of Pharmacology, 2001, 134, 957-968.	5.4	74
32	Stimulation of NO Production and of eNOS Phosphorylation in the Microcirculation in Vivo. Microvascular Research, 2000, 60, 104-111.	2.5	48
33	Rise in endothelium-derived NO after stimulation of rat perivascular sympathetic mesenteric nerves. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1027-H1035.	3.2	29
34	A Peptide Released by Pepsin From Kininogen Domain 1 Is a Potent Blocker of ANP-Mediated Diuresis-Natriuresis in the Rat. Hypertension, 1997, 30, 897-904.	2.7	2
35	A Fragment of Human Kininogen Containing Bradykinin Blunts the Diuretic Effect of Atrial Natriuretic Peptide. Experimental Biology and Medicine, 1996, 212, 128-134.	2.4	3