Stephen Hillier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2228347/publications.pdf Version: 2024-02-01

STEDHEN HILLIED

#	Article	IF	CITATIONS
1	Phosphorus abundance and speciation in acid forest Podzols – Effect of postglacial weathering. Geoderma, 2022, 406, 115500.	5.1	10
2	Effect of Structural Fe Reduction on Water Sorption by Swelling and Non-Swelling Clay Minerals. Minerals (Basel, Switzerland), 2022, 12, 453.	2.0	3
3	Rapid extraction of high- and low-density microplastics from soil using high-gradient magnetic separation. Science of the Total Environment, 2022, 831, 154912.	8.0	12
4	Mineral composition and its relations to readily available element concentrations in cultivated soils of Finland. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2022, 72, 751-760.	0.6	4
5	Micro and nano sized particles in leachates from agricultural soils: Phosphorus and sulfur speciation by X-ray micro-spectroscopy. Water Research, 2021, 189, 116585.	11.3	15
6	powdR: An R package for quantitative mineralogy using full pattern summation of X-ray powder diffraction data. Computers and Geosciences, 2021, 147, 104662.	4.2	18
7	Natural gamma-ray spectroscopy (NGS) as a proxy for the distribution of clay minerals and bitumen in the Cretaceous McMurray Formation, Alberta, Canada. Fuel, 2021, 288, 119513.	6.4	4
8	AUTOMATED FULL-PATTERN SUMMATION OF X-RAY POWDER DIFFRACTION DATA FOR HIGH-THROUGHPUT QUANTIFICATION OF CLAY-BEARING MIXTURES. Clays and Clay Minerals, 2021, 69, 38-51.	1.3	8
9	Chemical and Physical Mechanisms of Fungal Bioweathering of Rock Phosphate. Geomicrobiology Journal, 2021, 38, 384-394.	2.0	12
10	Adsorption of phosphate by halloysite (7 Ã) nanotubes (HNTs). Clay Minerals, 2020, 55, 184-193.	0.6	8
11	Current, steady-state and historical weathering rates of base cations at two forest sites in northern and southern Sweden: a comparison of three methods. Biogeosciences, 2020, 17, 281-304.	3.3	8
12	Mineral–nutrient relationships in African soils assessed using cluster analysis of X-ray powder diffraction patterns and compositional methods. Geoderma, 2020, 375, 114474.	5.1	26
13	Geophagy among East African Chimpanzees: consumed soils provide protection from plant secondary compounds and bioavailable iron. Environmental Geochemistry and Health, 2019, 41, 2911-2927.	3.4	7
14	The Weaklaw Vent, SE Scotland: Metasomatism of eruptive products by carbo-hydro-fluids of probable mantle origin. Mineralogical Magazine, 2019, 83, 855-867.	1.4	1
15	Limitation of fixed nitrogen and deepening of the carbonate-compensation depth through the Hirnantian at Dob's Linn, Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534, 109321.	2.3	19
16	The importance of mineral determinations to PROFILE base cation weathering release rates: a case study. Biogeosciences, 2019, 16, 1903-1920.	3.3	10
17	Pre-treatment of soil X-ray powder diffraction data for cluster analysis. Geoderma, 2019, 337, 413-424.	5.1	12
18	Mineral element composition of cabbage as affected by soil type and phosphorus and zinc fertilisation. Plant and Soil, 2019, 434, 151-165.	3.7	31

#	Article	IF	CITATIONS
19	Comparison of measured (XRPD) and modeled (A2M) soil mineralogies: A study of some Swedish forest soils in the context of weathering rate predictions. Geoderma, 2018, 310, 77-88.	5.1	14
20	Soil eaten by chacma baboons adsorbs polar plant secondary metabolites representative of those found in their diet. Environmental Geochemistry and Health, 2018, 40, 803-813.	3.4	5
21	Phase and structural features of tubular halloysite (7 Ã). Clay Minerals, 2018, 53, 691-720.	0.6	29
22	Use of hydraulic binders for reducing sulphate leaching: application to gypsiferous soil sampled in Ile-de-France region (France). Environmental Science and Pollution Research, 2018, 25, 22977-22997.	5.3	6
23	Using rule-based regression models to predict and interpret soil properties from X-ray powder diffraction data. Geoderma, 2018, 329, 43-53.	5.1	16
24	Multi-technique approach to the petrophysical characterization of Berea sandstone core plugs (Cleveland Quarries, USA). Journal of Petroleum Science and Engineering, 2017, 149, 436-455.	4.2	36
25	Clay mineral indices in palaeo-geothermal and hydrothermal studies. Applied Clay Science, 2016, 134, 161-163.	5.2	0
26	Phosphataseâ€mediated bioprecipitation of lead by soil fungi. Environmental Microbiology, 2016, 18, 219-231.	3.8	55
27	Clay mineral source tracing and characterisation of Burdekin River (NE Australia) and flood plume fine sediment. Journal of Soils and Sediments, 2016, 16, 687-706.	3.0	18
28	Determination of zeolite-group mineral compositions by electron probe microanalysis. Mineralogical Magazine, 2016, 80, 781-807.	1.4	26
29	Mineralogy and biogeochemistry of potassium in the Skogaby experimental forest, southwest Sweden: pools, fluxes and K/Rb ratios in soil and biomass. Biogeochemistry, 2016, 131, 77-102.	3.5	17
30	Effect of pH on the cation exchange capacity of some halloysite nanotubes. Clay Minerals, 2016, 51, 373-383.	0.6	10
31	Correlations among the mineralogical and physical properties of halloysite nanotubes (HNTs). Clay Minerals, 2016, 51, 325-350.	0.6	56
32	The rise and rise of halloysite. Clay Minerals, 2016, 51, 303-308.	0.6	31
33	Evolution of phosphorus speciation with depth in an agricultural soil profile. Geoderma, 2016, 280, 29-37.	5.1	47
34	Testing chemical weathering proxies in Miocene–Recent fluvial-derived sediments in the South China Sea. Geological Society Special Publication, 2016, 429, 45-72.	1.3	11
35	A New Lead Hydroxycarbonate Produced During Transformation of Lead Metal by the Soil Fungus <i>Paecilomyces javanicus</i> . Geomicrobiology Journal, 2016, 33, 250-260.	2.0	22
36	Waste recovered byâ€products can increase growth of grass–clover mixtures in low fertility soils and alter botanical and mineral nutrient composition. Annals of Applied Biology, 2015, 166, 105-117.	2.5	11

#	Article	IF	CITATIONS
37	Transformation of vanadinite [<scp><scp>Pb₅</scp></scp> (<scp>VO₄</scp>) <scp><scp>_{3by fungi. Environmental Microbiology, 2015, 17, 2018-2034.}</scp></scp>	ıb× £k ∕sc∣	o> ⊲ac b>]
38	Fungal Bioweathering of Mimetite and a General Geomycological Model for Lead Apatite Mineral Biotransformations. Applied and Environmental Microbiology, 2015, 81, 4955-4964.	3.1	30
39	Uranium phosphate biomineralization by fungi. Environmental Microbiology, 2015, 17, 2064-2075.	3.8	75
40	Assessing biogas digestate, pot ale, wood ash and rockdust as soil amendments: effects on soil chemistry and microbial community composition. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 383-399.	0.6	5
41	Investigating <scp>D</scp> evonian trees as geoâ€engineers of past climates: linking palaeosols to palaeobotany and experimental geobiology. Palaeontology, 2015, 58, 787-801.	2.2	66
42	Respirable volcanic ash is distinct mineralogically, physicochemically and toxicologically from soils originating from weathered volcanic products. A comment on Cervini-Silva et al. (2014) "Lipid peroxidation and cytotoxicity induced by respirable volcanic ash― Journal of Hazardous Materials, 2015, 285, 366-367.	12.4	1
43	Pyromorphite formation in a fungal biofilm community growing on lead metal. Environmental Microbiology, 2014, 16, 1441-1451.	3.8	37
44	Fungal transformation of metallic lead to pyromorphite in liquid medium. Chemosphere, 2014, 113, 17-21.	8.2	32
45	Clay mineral type effect on bacterial enteropathogen survival in soil. Science of the Total Environment, 2014, 468-469, 302-305.	8.0	45
46	Kaolins and Health: From First Grade to First Aid. Elements, 2014, 10, 207-211.	0.5	34
47	Addition of a volcanic rockdust to soils has no observable effects on plant yield and nutrient status or on soil microbial activity. Plant and Soil, 2013, 367, 419-436.	3.7	26
48	Fungal biotransformation of zinc silicate and sulfide mineral ores. Environmental Microbiology, 2013, 15, 2173-2186.	3.8	49
49	Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model. Food and Function, 2013, 4, 1263.	4.6	30
50	Holocene evolution in weathering and erosion patterns in the Pearl River delta. Geochemistry, Geophysics, Geosystems, 2013, 14, 2349-2368.	2.5	113
51	Downward migration of radiocaesium in organic soils across a transect in Scotland. Journal of Environmental Radioactivity, 2013, 115, 124-133.	1.7	17
52	On the mechanism of exfoliation of â€~Vermiculite'. Clay Minerals, 2013, 48, 563-582.	0.6	83
53	Acidâ€extractable potassium in agricultural soils: Source minerals assessed by differential and quantitative Xâ€ray diffraction. Journal of Plant Nutrition and Soil Science, 2013, 176, 407-419.	1.9	13
54	Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14ka in the South China Sea. Chemical Geology, 2012, 326-327, 1-18.	3.3	120

#	Article	IF	CITATIONS
55	Mineralogy and chemical forms of lead and zinc in abandoned mine wastes and soils: An example from Morocco. Journal of Geochemical Exploration, 2012, 113, 56-67.	3.2	72
56	Relative coherent stacking potential of fundamental particles of illite-smectite and its relationship to geological environment. Clay Minerals, 2012, 47, 319-327.	0.6	3
57	Chemical weathering and provenance evolution of Holocene–Recent sediments from the Western Indus Shelf, Northern Arabian Sea inferred from physical and mineralogical properties. Marine Geology, 2012, 326-328, 101-115.	2.1	33
58	Lead Transformation to Pyromorphite by Fungi. Current Biology, 2012, 22, 237-241.	3.9	99
59	Clay mineral variations in Holocene terrestrial sediments from the Indus Basin. Quaternary Research, 2012, 77, 368-381.	1.7	78
60	Biotransformation of manganese oxides by fungi: solubilization and production of manganese oxalate biominerals. Environmental Microbiology, 2012, 14, 1744-1753.	3.8	63
61	Discussion in response to Knut BjÃ,rlykke regarding JMPG_1376 "Open-System Chemical Behavior In Deep Wilcox Group Mudstones, Texas Gulf Coast, USA". Marine and Petroleum Geology, 2011, 28, 1383-1384.	3.3	9
62	Changes in mineralogy of loess–paleosol sections across the Chinese Loess Plateau. Quaternary Research, 2011, 75, 245-255.	1.7	77
63	Interpretation of reflectance spectra of clay mineral-silica mixtures: implications for Martian clay mineralogy at Mawrth Vallis. Clays and Clay Minerals, 2011, 59, 400-415.	1.3	46
64	The development of rare earth element-labelled potassium-depleted clays for use as cohesive sediment tracers in aquatic environments. Journal of Soils and Sediments, 2011, 11, 1052-1061.	3.0	9
65	Differences and Commonalities in Physical, Chemical and Mineralogical Properties of Zanzibari Geophagic Soils. Journal of Chemical Ecology, 2010, 36, 129-140.	1.8	45
66	Quantifying uptake rate of potassium from soil in a long-term grass rotation experiment. Plant and Soil, 2010, 335, 3-19.	3.7	14
67	Aqua regia extractable selenium concentrations of some Scottish topsoils measured by ICPâ€MS and the relationship with mineral and organic soil components. Journal of the Science of Food and Agriculture, 2010, 90, 972-980.	3.5	20
68	Fabric anisotropy induced by primary depositional variations in the silt: clay ratio in two fine-grained slope fan complexes: Texas Gulf Coast and northern North Sea. Sedimentary Geology, 2010, 226, 42-53.	2.1	55
69	Geophagy and potential health implications: geohelminths, microbes and heavy metals. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2010, 104, 787-795.	1.8	74
70	Measurement of soil characteristics for forensic applications. Surface and Interface Analysis, 2010, 42, 363-377.	1.8	81
71	Open-system chemical behavior in deep Wilcox Group mudstones, Texas Gulf Coast, USA. Marine and Petroleum Geology, 2010, 27, 1804-1818.	3.3	88
72	Assessing potassium reserves in northern temperate grassland soils: A perspective based on quantitative mineralogical analysis and aqua-regia extractable potassium. Geoderma, 2010, 158, 303-314.	5.1	20

#	Article	IF	CITATIONS
73	Rock-Building Fungi. Geomicrobiology Journal, 2010, 27, 624-629.	2.0	78
74	Trace elements in recent groundwater of an artesian flow system and comparison with snow: enrichments, depletions, and chemical evolution of the water. Journal of Environmental Monitoring, 2010, 12, 208-217.	2.1	38
75	Mineralogical and chemical characterization of some vermiculites from the Mozambique Belt of Tanzania for agricultural use. Clay Minerals, 2009, 44, 1-17.	0.6	5
76	Effect of EDTA on the fractionation and uptake by Taraxacum officinale of potentially toxic elements in soil from former chemical manufacturing sites. Plant and Soil, 2009, 320, 117-129.	3.7	10
77	XANES Speciation of P in Environmental Samples: An Assessment of Filter Media for on-Site Wastewater Treatment. Environmental Science & Technology, 2009, 43, 6515-6521.	10.0	55
78	Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma, 2009, 151, 109-120.	5.1	77
79	Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (U.S.A). Sedimentary Geology, 2008, 208, 27-35.	2.1	34
80	Does the preferential microbial colonisation of ferromagnesian minerals affect mineral weathering in soil?. Die Naturwissenschaften, 2008, 95, 851-858.	1.6	22
81	Bulk mineralogical characterisation of oilfield reservoir rocks and sandstones using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Partial Least Squares analysis. Journal of Petroleum Science and Engineering, 2008, 60, 1-17.	4.2	26
82	Role of fungi in the biogeochemical fate of depleted uranium. Current Biology, 2008, 18, R375-R377.	3.9	77
83	Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: A combined solution chemistry and X-ray powder diffraction study. Science of the Total Environment, 2008, 407, 603-614.	8.0	48
84	The contribution of aeolian material to an Aridisol from southern Jordan as revealed by mineralogical analysis. Journal of Arid Environments, 2008, 72, 1431-1447.	2.4	19
85	Quantitative bulk and single-particle mineralogy of a thick Chinese loess–paleosol section: implications for loess provenance and weathering. Quaternary Science Reviews, 2008, 27, 1271-1287.	3.0	84
86	Contemporary pedogenic formation of palygorskite in irrigation-induced, saline-sodic, shrink-swell soils of Maharashtra, India. Clays and Clay Minerals, 2008, 56, 531-548.	1.3	18
87	Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: How random are powder samples?. Clays and Clay Minerals, 2008, 56, 404-415.	1.3	57
88	Distinguishing opaline silica from cristobalite in bentonites: a practical procedure and perspective based on NaOH dissolution. Clay Minerals, 2008, 43, 477-486.	0.6	26
89	Toward a Comprehensive Approach to the Collection and Analysis of Pica Substances, with Emphasis on Geophagic Materials. PLoS ONE, 2008, 3, e3147.	2.5	58
90	Potassium release and fixation as a function of fertilizer application rate and soil parent material. Geoderma, 2007, 140, 188-198.	5.1	103

#	Article	IF	CITATIONS
91	Fungal Deterioration of Barrier Concrete used in Nuclear Waste Disposal. Geomicrobiology Journal, 2007, 24, 643-653.	2.0	51
92	Hydrogarnet:Â A Host Phase for Cr(VI) in Chromite Ore Processing Residue (COPR) and Other High pH Wastes. Environmental Science & Technology, 2007, 41, 1921-1927.	10.0	72
93	Fungal transformations of uranium oxides. Environmental Microbiology, 2007, 9, 1696-1710.	3.8	101
94	Long-term K dynamics in organic and conventional mixed cropping systems as related to management and soil properties. Agriculture, Ecosystems and Environment, 2007, 122, 413-426.	5.3	57
95	Biomineralization of Fungal Hyphae with Calcite (CaCO3) and Calcium Oxalate Mono- and Dihydrate in Carboniferous Limestone Microcosms. Geomicrobiology Journal, 2006, 23, 599-611.	2.0	115
96	Some successful approaches to quantitative mineral analysis as revealed by the 3 rd Reynolds Cup contest. Clays and Clay Minerals, 2006, 54, 748-760.	1.3	186
97	Sediment influence on congener-specific PCB bioaccumulation by Mytilus edulis: a case study from an intertidal hot spot, Clyde Estuary, UK. Journal of Environmental Monitoring, 2006, 8, 887.	2.1	19
98	Mineral weathering in trachydacitic-derived soils and saprolites involving formation of embryonic halloysite and gibbsite at Mt. Amiata, Central Italy. Geoderma, 2006, 133, 173-190.	5.1	32
99	Mineralogical budgeting of potassium in soil: A basis for understanding standard measures of reserve potassium. Journal of Plant Nutrition and Soil Science, 2006, 169, 605-615.	1.9	43
100	Zinc Phosphate Transformations by the Paxillus involutus/Pine Ectomycorrhizal Association. Microbial Ecology, 2006, 52, 322-333.	2.8	50
101	The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites. Science of the Total Environment, 2006, 360, 90-97.	8.0	38
102	Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. Science of the Total Environment, 2006, 364, 32-44.	8.0	97
103	Clay mineralogy of the Old Red Sandstone and Devonian sedimentary rocks of Wales, Scotland and England. Clay Minerals, 2006, 41, 433-471.	0.6	39
104	The slip surface in the D Zone of the Barton Clay. Quarterly Journal of Engineering Geology and Hydrogeology, 2006, 39, 357-370.	1.4	4
105	How reliable is the K-Ar glauconite chronometer? A case study of Eocene sediments from the Isle of Wight. Clay Minerals, 2005, 40, 167-176.	0.6	35
106	Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria caledonica. Applied and Environmental Microbiology, 2005, 71, 371-381.	3.1	241
107	Phosphorus Composition of Sheep Feces and Changes in the Field Determined by31P NMR Spectroscopy and XRPD. Environmental Science & Technology, 2005, 39, 9205-9210.	10.0	17
108	Zinc Phosphate and Pyromorphite Solubilization by Soil Plant-Symbiotic Fungi. Geomicrobiology Journal, 2004, 21, 351-366.	2.0	122

#	Article	IF	CITATIONS
109	Quantitative assessment of the effects of agricultural practices designed to reduce 137Cs and 90Sr soil-plant transfer in meadows. Science of the Total Environment, 2004, 332, 23-38.	8.0	29
110	Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue. Science of the Total Environment, 2003, 308, 195-210.	8.0	107
111	Laboratory experiments to predict changes in radiocaesium root uptake after flooding events. Journal of Environmental Radioactivity, 2003, 67, 247-259.	1.7	7
112	Chromium Remediation or Release? Effect of Iron(II) Sulfate Addition on Chromium(VI) Leaching from Columns of Chromite Ore Processing Residue. Environmental Science & Technology, 2003, 37, 3206-3213.	10.0	120
113	Weathering of sandstone clasts in a forest soil in Tuscany (Italy). Geoderma, 2003, 116, 357-372.	5.1	17
114	l-S precipitation in pore space as the cause of geopressuring in Mesozoic mudstones, Egersund Basin, Norwegian continental shelf. American Mineralogist, 2002, 87, 1580-1589.	1.9	46
115	Berthierine/chamosite, corrensite, and discrete chlorite from evolved verdine and evaporite-associated facies in the Jurassic Sundance Formation, Wyoming. American Mineralogist, 2002, 87, 1607-1615.	1.9	47
116	Identification of halloysite (7 Ã) by ethylene glycol solvation: the â€~MacEwan effect'. Clay Minerals, 2002, 37, 487-496.	0.6	46
117	Identification and geochemical modeling of processes controlling leaching of Cr(VI) and other major elements from chromite ore processing residue. Geochimica Et Cosmochimica Acta, 2002, 66, 3927-3942.	3.9	148
118	Insights into sequential chemical extraction procedures from quantitative XRD: a study of trace metal partitioning in sediments related to frog malformities. Chemical Geology, 2002, 184, 337-357.	3.3	39
119	Quantitative determination of cerussite (lead carbonate) by X-ray powder diffraction and inferences for lead speciation and transport in stream sediments from a former lead mining area in Scotland. Applied Geochemistry, 2001, 16, 597-608.	3.0	28
120	Particulate composition and origin of suspended sediment in the R. Don, Aberdeenshire, UK. Science of the Total Environment, 2001, 265, 281-293.	8.0	50
121	Title is missing!. Environmental Geochemistry and Health, 2001, 23, 261-265.	3.4	19
122	Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Minerals, 2000, 35, 291-302.	0.6	292
123	Lead mineral transformation by fungi. Current Biology, 1999, 9, 691-694.	3.9	169
124	Use of an Air Brush to Spray Dry Samples for X-ray Powder Diffraction. Clay Minerals, 1999, 34, 127-135.	0.6	11
125	Origin of pore-lining chlorite in the aeolian Rotliegend of northern Germany. Clay Minerals, 1996, 31, 153-171.	0.6	50
126	The implications of reworking on the mineralogy and chemistry of Lower Carboniferous K-bentonites. Clay Minerals, 1996, 31, 377-390.	0.6	16

#	Article	IF	CITATIONS
127	Effects of hydrothermal activity on clay mineral diagenesis in Miocene shales and sandstones from the Ulleung (Tsushima) back-arc basin, East Sea (Sea of Japan), Korea. Clay Minerals, 1996, 31, 113-126.	0.6	13
128	Mafic phyllosilicates in low-grade metabasites. Characterization using deconvolution analysis — discussion. Clay Minerals, 1995, 30, 67-73.	0.6	7
129	Illite/Smectite Diagenesis and Its Variable Correlation with Vitrinite Reflectance in the Pannonian Basin. Clays and Clay Minerals, 1995, 43, 174-183.	1.3	68
130	Pore-lining chlorites in siliciclastic reservoir sandstones: electron microprobe, SEM and XRD data, and implications for their origin. Clay Minerals, 1994, 29, 665-679.	0.6	130
131	Vitrinite reflectivity and the structure and burial history of the Old Red Sandstone of the Midland Valley of Scotland. Journal of the Geological Society, 1994, 151, 425-438.	2.1	19
132	Origin, Diagenesis, and Mineralogy of Chlorite Minerals in Devonian Lacustrine Mudrocks, Orcadian Basin, Scotland. Clays and Clay Minerals, 1993, 41, 240-259.	1.3	107
133	Organic maturation, thermal history and hydrocarbon generation in the Orcadian Basin, Scotland. Journal of the Geological Society, 1992, 149, 491-502.	2.1	41
134	Chlorite interstratified with a 7 Ã mineral: an example from offshore Norway and possible implications for the interpretation of the composition of diagenetic chlorites. Clay Minerals, 1992, 27, 475-486.	0.6	60
135	Cation exchange †staining' of clay minerals in thin-section for electron microscopy. Clay Minerals, 1992, 27, 379-384.	0.6	14
136	Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites. Clay Minerals, 1991, 26, 149-168.	0.6	177
137	Illite/Smectite Diagenesis in Devonian Lacustrine Mudrocks from Northern Scotland and Its Relationship to Organic Maturity Indicators. Clay Minerals, 1989, 24, 181-196.	0.6	25

138 Chlorite in sediments. , 1978, , 195-202.

0