Olaf Schneewind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2228057/publications.pdf

Version: 2024-02-01

230 papers

24,691 citations

83 h-index 9346

g-index

236 all docs

236 docs citations

236 times ranked 16809 citing authors

#	Article	IF	CITATIONS
1	Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope. Microbiology and Molecular Biology Reviews, 1999, 63, 174-229.	2.9	1,170
2	Staphylococcus aureus Sortase, an Enzyme that Anchors Surface Proteins to the Cell Wall. Science, 1999, 285, 760-763.	6.0	923
3	Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria. Microbiology and Molecular Biology Reviews, 2006, 70, 192-221.	2.9	569
4	Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid, 2006, 55, 58-63.	0.4	562
5	Sorting of protein a to the staphylococcal cell wall. Cell, 1992, 70, 267-281.	13.5	545
6	Passage of Heme-Iron Across the Envelope of Staphylococcus aureus. Science, 2003, 299, 906-909.	6.0	544
7	Genome Sequence of <i>Staphylococcus aureus</i> Strain Newman and Comparative Analysis of Staphylococcal Genomes: Polymorphism and Evolution of Two Major Pathogenicity Islands. Journal of Bacteriology, 2008, 190, 300-310.	1.0	511
8	Staphylococcal manipulation of host immune responses. Nature Reviews Microbiology, 2015, 13, 529-543.	13.6	434
9	Iron-Source Preference of Staphylococcus aureus Infections. Science, 2004, 305, 1626-1628.	6.0	398
10	Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Molecular Microbiology, 1994, 14, 115-121.	1.2	374
11	Genetic requirements for <i>Staphylococcus aureus </i> li>abscess formation and persistence in host tissues. FASEB Journal, 2009, 23, 3393-3404.	0.2	363
12	<i>Staphylococcus aureus</i> Degrades Neutrophil Extracellular Traps to Promote Immune Cell Death. Science, 2013, 342, 863-866.	6.0	344
13	Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Molecular Microbiology, 2001, 40, 1049-1057.	1.2	343
14	An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2293-2298.	3.3	338
15	Assembly of pili on the surface of Corynebacterium diphtheriae. Molecular Microbiology, 2003, 50, 1429-1438.	1.2	320
16	Surface Proteins and Exotoxins Are Required for the Pathogenesis of Staphylococcus aureus Pneumonia. Infection and Immunity, 2007, 75, 1040-1044.	1.0	314
17	A mRNA Signal for the Type III Secretion of Yop Proteins by Yersinia enterocolitica. Science, 1997, 278, 1140-1143.	6.0	311
18	Targeting of Alphaâ€Hemolysin by Active or Passive Immunization Decreases Severity of USA300 Skin Infection in a Mouse Model. Journal of Infectious Diseases, 2010, 202, 1050-1058.	1.9	303

#	Article	IF	Citations
19	Plague Bacteria Target Immune Cells During Infection. Science, 2005, 309, 1739-1741.	6.0	300
20	Vaccine assembly from surface proteins of Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16942-16947.	3.3	279
21	Staphylococcus aureus IsdB Is a Hemoglobin Receptor Required for Heme Iron Utilization. Journal of Bacteriology, 2006, 188, 8421-8429.	1.0	277
22	Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12312-12317.	3.3	272
23	Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8478-8483.	3.3	269
24	Contribution of Coagulases towards Staphylococcus aureus Disease and Protective Immunity. PLoS Pathogens, 2010, 6, e1001036.	2.1	258
25	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2000, 275, 9876-9881.	1.6	254
26	IsdG and IsdI, Heme-degrading Enzymes in the Cytoplasm of Staphylococcus aureus. Journal of Biological Chemistry, 2004, 279, 436-443.	1.6	253
27	A play in four acts: Staphylococcus aureus abscess formation. Trends in Microbiology, 2011, 19, 225-232.	3.5	233
28	Architects at the bacterial surface $\hat{a}\in$ " sortases and the assembly of pili with isopeptide bonds. Nature Reviews Microbiology, 2011, 9, 166-176.	13.6	233
29	Assembly of pili in Gram-positive bacteria. Trends in Microbiology, 2004, 12, 228-234.	3.5	223
30	Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1694, 269-278.	1.9	220
31	Prophages of Staphylococcus aureus Newman and their contribution to virulence. Molecular Microbiology, 2006, 62, 1035-1047.	1.2	219
32	Sortase as a Target of Anti-Infective Therapy. Pharmacological Reviews, 2008, 60, 128-141.	7.1	219
33	Crystal Structures of Staphylococcus aureus Sortase A and Its Substrate Complex. Journal of Biological Chemistry, 2004, 279, 31383-31389.	1.6	215
34	<i>Staphylococcus aureus</i> synthesizes adenosine to escape host immune responses. Journal of Experimental Medicine, 2009, 206, 2417-2427.	4.2	215
35	Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Molecular Microbiology, 2002, 43, 869-881.	1.2	214
36	Protein secretion and surface display in Gram-positive bacteria. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1123-1139.	1.8	212

#	Article	IF	Citations
37	Pathogenesis of <i>Staphylococcus aureus</i> Bloodstream Infections. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 343-364.	9.6	212
38	Role of Protein A in the Evasion of Host Adaptive Immune Responses by Staphylococcus aureus. MBio, 2013, 4, e00575-13.	1.8	210
39	Preventing Staphylococcus aureus Sepsis through the Inhibition of Its Agglutination in Blood. PLoS Pathogens, 2011, 7, e1002307.	2.1	195
40	Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Molecular Microbiology, 1997, 24, 757-765.	1.2	194
41	Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes and Infection, 2004, 6, 390-397.	1.0	194
42	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 16241-16248.	1.6	193
43	Protein secretion and the pathogenesis of bacterial infections. Genes and Development, 2001, 15, 1725-1752.	2.7	191
44	Nontoxigenic protein A vaccine for methicillin-resistant <i>Staphylococcus aureus</i> infections in mice. Journal of Experimental Medicine, 2010, 207, 1863-1870.	4.2	189
45	Recurrent infections and immune evasion strategies of Staphylococcus aureus. Current Opinion in Microbiology, 2012, 15, 92-99.	2.3	189
46	Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Molecular Microbiology, 2004, 53, 251-261.	1.2	173
47	Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3680-3685.	3.3	166
48	IsdA and IsdB antibodies protect mice against Staphylococcus aureus abscess formation and lethal challenge. Vaccine, 2010, 28, 6382-6392.	1.7	154
49	Cross-Linked Peptidoglycan Mediates Lysostaphin Binding to the Cell Wall Envelope of Staphylococcus aureus. Journal of Bacteriology, 2006, 188, 2463-2472.	1.0	150
50	In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nature Medicine, 2011, 17, 1142-1146.	15.2	144
51	Targeting ofYersiniaYop proteins into the cytosol of HeLa cells: oneâ€step translocation of YopE across bacterial and eukaryotic membranes is dependent on SycE chaperone. Molecular Microbiology, 1998, 28, 593-601.	1.2	143
52	Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Molecular Microbiology, 1999, 31, 1139-1148.	1.2	143
53	Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus. Journal of Biological Chemistry, 2002, 277, 7447-7452.	1.6	143
54	Toll-Like Receptor 6 Drives Differentiation of Tolerogenic Dendritic Cells and Contributes to LcrV-Mediated Plague Pathogenesis. Cell Host and Microbe, 2008, 4, 350-361.	5.1	136

#	Article	IF	Citations
55	Anchor Structure of Staphylococcal Surface Proteins. Journal of Biological Chemistry, 1999, 274, 24316-24320.	1.6	133
56	Antiinfective therapy with a small molecule inhibitor of <i>Staphylococcus aureus</i> sortase. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13517-13522.	3.3	128
57	Mouse models for infectious diseases caused by Staphylococcus aureus. Journal of Immunological Methods, 2014, 410, 88-99.	0.6	127
58	<i>Staphylococcus aureus</i> infection induces protein A–mediated immune evasion in humans. Journal of Experimental Medicine, 2014, 211, 2331-2339.	4.2	125
59	<i>Staphylococcus aureus</i> Secretes Coagulase and von Willebrand Factor Binding Protein to Modify the Coagulation Cascade and Establish Host Infections. Journal of Innate Immunity, 2012, 4, 141-148.	1.8	122
60	Anchor Structure of Staphylococcal Surface Proteins. Journal of Biological Chemistry, 1997, 272, 22285-22292.	1.6	120
61	Staphylococcus aureus IsdG and IsdI, Heme-degrading Enzymes with Structural Similarity to Monooxygenases. Journal of Biological Chemistry, 2005, 280, 2840-2846.	1.6	120
62	Surface Protein IsdC and Sortase B Are Required for Heme-Iron Scavenging of Bacillus anthracis. Journal of Bacteriology, 2006, 188, 8145-8152.	1.0	119
63	Bacillus anthracis Secretes Proteins That Mediate Heme Acquisition from Hemoglobin. PLoS Pathogens, 2008, 4, e1000132.	2.1	116
64	Lipoteichoic Acids, Phosphate-Containing Polymers in the Envelope of Gram-Positive Bacteria. Journal of Bacteriology, 2014, 196, 1133-1142.	1.0	115
65	Iron Acquisition and Transport in Staphylococcus aureus. BioMetals, 2006, 19, 193-203.	1.8	113
66	Release of protein A from the cell wall of <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1574-1579.	3.3	113
67	Bacillus anthracis IsdG, a Heme-Degrading Monooxygenase. Journal of Bacteriology, 2006, 188, 1071-1080.	1.0	112
68	Sec-secretion and sortase-mediated anchoring of proteins in Gram-positive bacteria. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1687-1697.	1.9	112
69	The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes and Infection, 2003, 5, 775-780.	1.0	104
70	Staphylococcus aureus Mutants Lacking the LytR-CpsA-Psr Family of Enzymes Release Cell Wall Teichoic Acids into the Extracellular Medium. Journal of Bacteriology, 2013, 195, 4650-4659.	1.0	104
71	Identification of secreted bacterial proteins by noncanonical amino acid tagging. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 433-438.	3.3	99
72	Signal peptides direct surface proteins to two distinct envelope locations of Staphylococcus aureus. EMBO Journal, 2008, 27, 2656-2668.	3.5	98

#	Article	IF	CITATIONS
73	Secreted Proteases Control Autolysin-mediated Biofilm Growth of Staphylococcus aureus. Journal of Biological Chemistry, 2013, 288, 29440-29452.	1.6	98
74	The YSIRK-G/S Motif of Staphylococcal Protein A and Its Role in Efficiency of Signal Peptide Processing. Journal of Bacteriology, 2003, 185, 2910-2919.	1.0	97
75	Staphylococcus aureus Mutants with Increased Lysostaphin Resistance. Journal of Bacteriology, 2006, 188, 6286-6297.	1.0	97
76	Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor–binding protein. Blood, 2014, 124, 1669-1676.	0.6	96
77	Effect of srtA and srtB gene expression on the virulence of Staphylococcus aureus in animal models of infection. Journal of Antimicrobial Chemotherapy, 2004, 53, 480-486.	1.3	95
78	LcrV Plague Vaccine with Altered Immunomodulatory Properties. Infection and Immunity, 2005, 73, 5152-5159.	1.0	95
79	On the Role ofStaphylococcus aureusSortase and Sortaseâ€Catalyzed Surface Protein Anchoring in Murine Septic Arthritis. Journal of Infectious Diseases, 2002, 185, 1417-1424.	1.9	94
80	Protein A-Specific Monoclonal Antibodies and Prevention of Staphylococcus aureus Disease in Mice. Infection and Immunity, 2012, 80, 3460-3470.	1.0	94
81	The Capsular Polysaccharide of Staphylococcus aureus Is Attached to Peptidoglycan by the LytR-CpsA-Psr (LCP) Family of Enzymes. Journal of Biological Chemistry, 2014, 289, 15680-15690.	1.6	93
82	<i>Staphylococcus aureus</i> endocarditis: distinct mechanisms of bacterial adhesion to damaged and inflamed heart valves. European Heart Journal, 2019, 40, 3248-3259.	1.0	92
83	YopD and LcrH Regulate Expression of <i>Yersinia enterocolitica</i> YopQ by a Posttranscriptional Mechanism and Bind to <i>yopQ</i> RNA. Journal of Bacteriology, 2002, 184, 1287-1295.	1.0	91
84	Targeting proteins to the cell wall of sporulating Bacillus anthracis. Molecular Microbiology, 2006, 62, 1402-1417.	1.2	91
85	Assembly of pili on the surface of <i>Bacillus cereus</i> vegetative cells. Molecular Microbiology, 2007, 66, 495-510.	1.2	91
86	BslA, a pXO1â€encoded adhesin of <i>Bacillus anthracis</i> . Molecular Microbiology, 2008, 68, 504-515.	1.2	85
87	Regulated Secretion of YopN by the Type III Machinery of Yersinia enterocolitica. Journal of Bacteriology, 2001, 183, 5293-5301.	1.0	84
88	Determinants of Murein Hydrolase Targeting to Cross-wall of Staphylococcus aureus Peptidoglycan. Journal of Biological Chemistry, 2012, 287, 10460-10471.	1.6	83
89	Abscess Formation and Alpha-Hemolysin Induced Toxicity in a Mouse Model of Staphylococcus aureus Peritoneal Infection. Infection and Immunity, 2012, 80, 3721-3732.	1.0	83
90	A Program of Yersinia enterocolitica Type III Secretion Reactions Is Activated by Specific Signals. Journal of Bacteriology, 2001, 183, 4970-4978.	1.0	81

#	Article	IF	CITATIONS
91	The Structure of Sortase B, a Cysteine Transpeptidase that Tethers Surface Protein to the Staphylococcus aureus Cell Wall. Structure, 2004, 12, 105-112.	1.6	79
92	Structures of Sortase B from Staphylococcus aureus and Bacillus anthracis Reveal Catalytic Amino Acid Triad in the Active Site. Structure, 2004, 12, 1147-1156.	1.6	79
93	Characterization of the Yersinia enterocolitica Type III Secretion ATPase YscN and Its Regulator, YscL. Journal of Bacteriology, 2006, 188, 3525-3534.	1.0	77
94	Bacillus anthracis Sortase A (SrtA) Anchors LPXTG Motif-Containing Surface Proteins to the Cell Wall Envelope. Journal of Bacteriology, 2005, 187, 4646-4655.	1.0	76
95	Amide bonds assemble pili on the surface of bacilli. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10215-10220.	3.3	76
96	Two capsular polysaccharides enable <i>Bacillus cereus</i> G9241 to cause anthraxâ€like disease. Molecular Microbiology, 2011, 80, 455-470.	1.2	76
97	Type III machines of pathogenic yersiniae secrete virulence factors into the extracellular milieu. Molecular Microbiology, 1999, 31, 1619-1629.	1.2	75
98	Distribution of Protein A on the Surface of Staphylococcus aureus. Journal of Bacteriology, 2007, 189, 4473-4484.	1.0	74
99	BslA, the Sâ€layer adhesin of <i>B.â€∫anthracis</i> , is a virulence factor for anthrax pathogenesis. Molecular Microbiology, 2010, 75, 324-332.	1.2	74
100	Structure of Surface Layer Homology (SLH) Domains from Bacillus anthracis Surface Array Protein. Journal of Biological Chemistry, 2011, 286, 26042-26049.	1.6	74
101	Bacillus anthracis Surface-Layer Proteins Assemble by Binding to the Secondary Cell Wall Polysaccharide in a Manner that Requires csaB and tagO. Journal of Molecular Biology, 2010, 401, 757-775.	2.0	73
102	LcrV, a Substrate for Yersinia enterocolitica Type III Secretion, Is Required for Toxin Targeting into the Cytosol of HeLa Cells. Journal of Biological Chemistry, 2000, 275, 36869-36875.	1.6	72
103	CcpA Mediates Proline Auxotrophy and Is Required for <i>Staphylococcus aureus</i> Pathogenesis. Journal of Bacteriology, 2010, 192, 3883-3892.	1.0	72
104	Type III Protein Secretion in Yersinia Species. Annual Review of Cell and Developmental Biology, 2002, 18, 107-133.	4.0	71
105	B cell superantigens in the human intestinal microbiota. Science Translational Medicine, 2019, 11, .	5. 8	70
106	Multiple Ligands of von Willebrand Factor-binding Protein (vWbp) Promote Staphylococcus aureus Clot Formation in Human Plasma. Journal of Biological Chemistry, 2013, 288, 28283-28292.	1.6	69
107	Yersinia enterocolitica Type III Secretion. Journal of Biological Chemistry, 1999, 274, 22102-22108.	1.6	68
108	Coagulases as Determinants of Protective Immune Responses against Staphylococcus aureus. Infection and Immunity, 2012, 80, 3389-3398.	1.0	68

#	Article	IF	CITATIONS
109	Generating a Collection of Insertion Mutations in the Staphylococcus aureus Genome Using bursa aurealis. Methods in Molecular Biology, 2008, 416, 103-116.	0.4	68
110	Anchor Structure of Cell Wall Surface Proteins in Listeria monocytogenes. Biochemistry, 2000, 39, 3725-3733.	1.2	66
111	Anchor Structure of Staphylococcal Surface Proteins. Journal of Biological Chemistry, 1998, 273, 29143-29149.	1.6	65
112	Anchor Structure of Staphylococcal Surface Proteins. Journal of Biological Chemistry, 2005, 280, 16263-16271.	1.6	65
113	Intramolecular amide bonds stabilize pili on the surface of bacilli. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19992-19997.	3.3	64
114	Rapidly Progressive, Fatal, Inhalation Anthrax-like Infection in a Human: Case Report, Pathogen Genome Sequencing, Pathology, and Coordinated Response. Archives of Pathology and Laboratory Medicine, 2011, 135, 1447-1459.	1.2	64
115	Immunization with Recombinant V10 Protects Cynomolgus Macaques from Lethal Pneumonic Plague. Infection and Immunity, 2008, 76, 5588-5597.	1.0	63
116	<i>Staphylococcus aureus</i> vaccines: Deviating from the carol. Journal of Experimental Medicine, 2016, 213, 1645-1653.	4.2	63
117	Roles of LcrG and LcrV during Type III Targeting of Effector Yops by Yersinia enterocolitica. Journal of Bacteriology, 2001, 183, 4588-4598.	1.0	62
118	Identifying protective antigens of <i>Staphylococcus aureus </i> , a pathogen that suppresses host immune responses. FASEB Journal, 2011, 25, 3605-3612.	0.2	62
119	Capsule anchoring in <i>Bacillus anthracis</i> occurs by a transpeptidation reaction that is inhibited by capsidin. Molecular Microbiology, 2009, 71, 404-420.	1.2	61
120	<i>Yersinia pestis caf1</i> Variants and the Limits of Plague Vaccine Protection. Infection and Immunity, 2008, 76, 2025-2036.	1.0	60
121	Prevention of pneumonic plague in mice, rats, guinea pigs and non-human primates with clinical grade rV10, rV10-2 or F1-V vaccines. Vaccine, 2011, 29, 6572-6583.	1.7	58
122	Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC Biochemistry, 2011, 12, 56.	4.4	58
123	LytN, a Murein Hydrolase in the Cross-wall Compartment of Staphylococcus aureus, Is Involved in Proper Bacterial Growth and Envelope Assembly. Journal of Biological Chemistry, 2011, 286, 32593-32605.	1.6	57
124	Immunogenicity and Protective Immunity against Bubonic Plague and Pneumonic Plague by Immunization of Mice with the Recombinant V10 Antigen, a Variant of LcrV. Infection and Immunity, 2006, 74, 4910-4914.	1.0	56
125	The Giant Protein Ebh Is a Determinant of Staphylococcus aureus Cell Size and Complement Resistance. Journal of Bacteriology, 2014, 196, 971-981.	1.0	54
126	Growth and Laboratory Maintenance of <i>Staphylococcus aureus</i> Current Protocols in Microbiology, 2013, 28, Unit 9C.1.	6.5	53

#	Article	IF	Citations
127	Anchor Structure of Staphylococcal Surface Proteins. Journal of Biological Chemistry, 1998, 273, 29135-29142.	1.6	52
128	Hereditary Hemochromatosis Restores the Virulence of Plague Vaccine Strains. Journal of Infectious Diseases, 2012, 206, 1050-1058.	1.9	52
129	Antibodies against a secreted product of <i>Staphylococcus aureus</i> trigger phagocytic killing. Journal of Experimental Medicine, 2016, 213, 293-301.	4.2	51
130	Yersinia enterocolitica Type III Secretion: Mutational Analysis of the yopQ Secretion Signal. Journal of Bacteriology, 2002, 184, 3321-3328.	1.0	48
131	Substrate recognition by the Yersinia type III protein secretion machinery. Molecular Microbiology, 2003, 50, 1095-1102.	1.2	48
132	Protein A-neutralizing monoclonal antibody protects neonatal mice against Staphylococcus aureus. Vaccine, 2015, 33, 523-526.	1.7	48
133	FPR1 is the plague receptor on host immune cells. Nature, 2019, 574, 57-62.	13.7	48
134	Yop Fusions to Tightly Folded Protein Domains and Their Effects on Yersinia enterocolitica Type III Secretion. Journal of Bacteriology, 2002, 184, 3740-3745.	1.0	47
135	EssD, a Nuclease Effector of the Staphylococcus aureus ESS Pathway. Journal of Bacteriology, 2017, 199, .	1.0	47
136	YscU cleavage and the assembly of <i>Yersinia</i> type III secretion machine complexes. Molecular Microbiology, 2008, 68, 1485-1501.	1.2	46
137	Peptidoglycan-linked protein A promotes T cell-dependent antibody expansion during <i>Staphylococcus aureus </i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5718-5723.	3.3	46
138	Secretion signal recognition by YscN, the Yersinia type III secretion ATPase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16490-16495.	3.3	45
139	Cell Wall Anchor Structure of BcpA Pili in Bacillus anthracis. Journal of Biological Chemistry, 2008, 283, 36676-36686.	1.6	43
140	Assembly and Function of the <i>Bacillus anthracis</i> S-Layer. Annual Review of Microbiology, 2017, 71, 79-98.	2.9	42
141	Pneumonic Plague Pathogenesis and Immunity in Brown Norway Rats. American Journal of Pathology, 2009, 174, 910-921.	1.9	41
142	LytR-CpsA-Psr Enzymes as Determinants of Bacillus anthracis Secondary Cell Wall Polysaccharide Assembly. Journal of Bacteriology, 2015, 197, 343-353.	1.0	41
143	Substrate recognition of type III secretion machines -testing the RNA signal hypothesis. Cellular Microbiology, 2005, 7, 1217-1225.	1.1	39
144	Sortase D Forms the Covalent Bond That Links BcpB to the Tip of Bacillus cereus Pili. Journal of Biological Chemistry, 2009, 284, 12989-12997.	1.6	39

#	Article	IF	Citations
145	ABI domainâ€containing proteins contribute to surface protein display and cell division in <i>Staphylococcus aureus</i> Molecular Microbiology, 2010, 78, 238-252.	1.2	39
146	Secretion Genes as Determinants of Bacillus anthracis Chain Length. Journal of Bacteriology, 2012, 194, 3841-3850.	1.0	39
147	Surface-Layer (S-Layer) Proteins Sap and EA1 Govern the Binding of the S-Layer-Associated Protein BslO at the Cell Septa of Bacillus anthracis. Journal of Bacteriology, 2012, 194, 3833-3840.	1.0	39
148	Protein A Suppresses Immune Responses during Staphylococcus aureus Bloodstream Infection in Guinea Pigs. MBio, $2015, 6, .$	1.8	39
149	Sortases, Surface Proteins, and Their Roles in <i>Staphylococcus aureus</i> Disease and Vaccine Development. Microbiology Spectrum, 2019, 7, .	1.2	39
150	Contribution of Staphylococcus aureus Coagulases and Clumping Factor A to Abscess Formation in a Rabbit Model of Skin and Soft Tissue Infection. PLoS ONE, 2016, 11, e0158293.	1.1	38
151	Plague vaccines and the molecular basis of immunity against <i>Yersinia pestis</i> . Hum Vaccin, 2009, 5, 817-823.	2.4	37
152	SagB Glucosaminidase Is a Determinant of Staphylococcus aureus Glycan Chain Length, Antibiotic Susceptibility, and Protein Secretion. Journal of Bacteriology, 2016, 198, 1123-1136.	1.0	37
153	Yersinia yopQ mRNA encodes a bipartite type III secretion signal in the first 15 codons. Molecular Microbiology, 2003, 50, 1189-1198.	1.2	36
154	Exploring Staphylococcus aureus pathways to disease for vaccine development. Seminars in Immunopathology, 2012, 34, 317-333.	2.8	36
155	Staphylococcal Protein A Contributes to Persistent Colonization of Mice with Staphylococcus aureus. Journal of Bacteriology, 2018, 200, .	1.0	36
156	<i>Staphylococcus aureus</i> targets the purine salvage pathway to kill phagocytes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6846-6851.	3.3	36
157	Sortase C-Mediated Anchoring of Basl to the Cell Wall Envelope of Bacillus anthracis. Journal of Bacteriology, 2007, 189, 6425-6436.	1.0	35
158	Penetration of the Blood-Brain Barrier by <i>Bacillus anthracis</i> Requires the pXO1-Encoded BsIA Protein. Journal of Bacteriology, 2009, 191, 7165-7173.	1.0	34
159	Amino acid residues 196–225 of LcrV represent a plague protective epitope. Vaccine, 2010, 28, 1870-1876.	1.7	34
160	Staphylococcus aureus Decolonization of Mice With Monoclonal Antibody Neutralizing Protein A. Journal of Infectious Diseases, 2019, 219, 884-888.	1.9	34
161	Impassable YscP Substrates and Their Impact on the <i>Yersinia enterocolitica</i> Type III Secretion Pathway. Journal of Bacteriology, 2008, 190, 6204-6216.	1.0	32
162	The SLHâ€domain protein BslO is a determinant of Bacillus anthracis chain length. Molecular Microbiology, 2011, 81, 192-205.	1.2	32

#	Article	IF	CITATIONS
163	Staphylococcus aureus Exploits the Host Apoptotic Pathway To Persist during Infection. MBio, 2019, 10, .	1.8	32
164	Rejection of Impassable Substrates by Yersinia Type III Secretion Machines. Journal of Bacteriology, 2005, 187, 7090-7102.	1.0	29
165	Genetic Manipulation of <i>Staphylococcus aureus</i> . Current Protocols in Microbiology, 2014, 32, Unit 9C.3	6.5	29
166	Sortase-conjugation generates a capsule vaccine that protects guinea pigs against Bacillus anthracis. Vaccine, 2012, 30, 3435-3444.	1.7	28
167	EssE Promotes Staphylococcus aureus ESS-Dependent Protein Secretion To Modify Host Immune Responses during Infection. Journal of Bacteriology, 2017, 199, .	1.0	28
168	Synthesis of Lipoteichoic Acids in Bacillus anthracis. Journal of Bacteriology, 2012, 194, 4312-4321.	1.0	27
169	The role of pili in Bacillus cereus intraocular infection. Experimental Eye Research, 2017, 159, 69-76.	1.2	26
170	A Synonymous Mutation in Yersinia enterocolitica yopE Affects the Function of the YopE Type III Secretion Signal. Journal of Bacteriology, 2005, 187, 707-715.	1.0	25
171	<i>Bacillus anthracis</i> protease InhA regulates BslAâ€mediated adhesion in human endothelial cells. Cellular Microbiology, 2012, 14, 1219-1230.	1.1	25
172	Translational Regulation of Yersinia enterocolitica mRNA Encoding a Type III Secretion Substrate. Journal of Biological Chemistry, 2013, 288, 35478-35488.	1.6	25
173	Bacillus cereus G9241 S-Layer Assembly Contributes to the Pathogenesis of Anthrax-Like Disease in Mice. Journal of Bacteriology, 2013, 195, 596-605.	1.0	24
174	Bacillus anthracis Acetyltransferases PatA1 and PatA2 Modify the Secondary Cell Wall Polysaccharide and Affect the Assembly of S-Layer Proteins. Journal of Bacteriology, 2013, 195, 977-989.	1.0	24
175	N-Acetylglucosaminylation of Serine-Aspartate Repeat Proteins Promotes Staphylococcus aureus Bloodstream Infection. Journal of Biological Chemistry, 2014, 289, 3478-3486.	1.6	24
176	Protective Immunity Against Plague. Advances in Experimental Medicine and Biology, 2007, 603, 415-424.	0.8	23
177	<i>Yersinia pestis</i> IS <i>1541</i> Transposition Provides for Escape from Plague Immunity. Infection and Immunity, 2009, 77, 1807-1816.	1.0	22
178	Pathogenic conversion of coagulase-negative staphylococci. Microbes and Infection, 2017, 19, 101-109.	1.0	22
179	Septal secretion of protein A in Staphylococcus aureus requires SecA and lipoteichoic acid synthesis. ELife, 2018, 7, .	2.8	22
180	Vaccine Protection of Leukopenic Mice against Staphylococcus aureus Bloodstream Infection. Infection and Immunity, 2014, 82, 4889-4898.	1.0	21

#	Article	IF	CITATIONS
181	Plague in Guinea Pigs and Its Prevention by Subunit Vaccines. American Journal of Pathology, 2011, 178, 1689-1700.	1.9	20
182	Bacillus anthracis tagO Is Required for Vegetative Growth and Secondary Cell Wall Polysaccharide Synthesis. Journal of Bacteriology, 2015, 197, 3511-3520.	1.0	20
183	EssH Peptidoglycan Hydrolase Enables Staphylococcus aureus Type VII Secretion across the Bacterial Cell Wall Envelope. Journal of Bacteriology, 2018, 200, .	1.0	20
184	<i>Yersinia enterocolitica</i> type III secretion of YopR requires a structure in its mRNA. Molecular Microbiology, 2008, 70, 1210-1222.	1.2	19
185	Glycosylation-dependent opsonophagocytic activity of staphylococcal protein A antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22992-23000.	3.3	19
186	Engineered human antibodies for the opsonization and killing of <i> Staphylococcus aureus </i> Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
187	Sortases make pili from three ingredients. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13703-13704.	3.3	17
188	Polymorphisms in thelcrVGene of Yersinia enterocolitica and Their Effect on Plague Protective Immunity. Infection and Immunity, 2012, 80, 1572-1582.	1.0	17
189	Isopeptide bonds of the major pilin protein BcpA influence pilus structure and bundle formation on the surface of <i>Bacillus cereus</i> i>. Molecular Microbiology, 2012, 85, 152-163.	1.2	17
190	YopR impacts type III needle polymerization in <i>Yersinia</i> species. Molecular Microbiology, 2010, 75, 221-229.	1.2	16
191	<i>Bacillus anthracis lcp</i> Genes Support Vegetative Growth, Envelope Assembly, and Spore Formation. Journal of Bacteriology, 2015, 197, 3731-3741.	1.0	16
192	Genes Required for Bacillus anthracis Secondary Cell Wall Polysaccharide Synthesis. Journal of Bacteriology, 2017, 199, .	1.0	16
193	FmhA and FmhC of Staphylococcus aureus incorporate serine residues into peptidoglycan cross-bridges. Journal of Biological Chemistry, 2020, 295, 13664-13676.	1.6	16
194	Galactosylation of the Secondary Cell Wall Polysaccharide of Bacillus anthracis and Its Contribution to Anthrax Pathogenesis. Journal of Bacteriology, 2018, 200, .	1.0	15
195	Glutamate Racemase Mutants of Bacillus anthracis. Journal of Bacteriology, 2015, 197, 1854-1861.	1.0	14
196	Glutathionylation of <i>Yersinia pestis</i> LcrV and Its Effects on Plague Pathogenesis. MBio, 2017, 8, .	1.8	14
197	The Expression of von Willebrand Factor-Binding Protein Determines Joint-Invading Capacity of Staphylococcus aureus, a Core Mechanism of Septic Arthritis. MBio, 2020, 11 , .	1.8	14
198	Assignment of the 1H, 13C and 15N signals of Sortase. Journal of Biomolecular NMR, 2001, 19, 379-380.	1.6	13

#	Article	IF	CITATIONS
199	GneZ, a UDP-GlcNAc 2-Epimerase, Is Required for S-Layer Assembly and Vegetative Growth of Bacillus anthracis. Journal of Bacteriology, 2014, 196, 2969-2978.	1.0	13
200	Marginal role of von Willebrand factor-binding protein and coagulase in the initiation of endocarditis in rats with catheter-induced aortic vegetations. Virulence, 2018, 9, 1615-1624.	1.8	13
201	The Secretion Signal of YopN, a Regulatory Protein of the Yersinia enterocolitica Type III Secretion Pathway. Journal of Bacteriology, 2004, 186, 6320-6324.	1.0	12
202	LcrV Mutants That Abolish Yersinia Type III Injectisome Function. Journal of Bacteriology, 2013, 195, 777-787.	1.0	11
203	A monoclonal antibody that recognizes the E domain of staphylococcal protein A. Vaccine, 2014, 32, 464-469.	1.7	10
204	Vaccine Protection against Bacillus cereus-Mediated Respiratory Anthrax-Like Disease in Mice. Infection and Immunity, 2013, 81, 1008-1017.	1.0	9
205	Bacillus anthracis SlaQ Promotes S-Layer Protein Assembly. Journal of Bacteriology, 2015, 197, 3216-3227.	1.0	9
206	A protein A based Staphylococcus aureus vaccine with improved safety. Vaccine, 2021, 39, 3907-3915.	1.7	9
207	Staphylococcal Protein Secretion and Envelope Assembly. Microbiology Spectrum, 2019, 7, .	1.2	8
208	Regulated Cleavage of Glycan Strands by the Murein Hydrolase SagB in Staphylococcus aureus Involves a Direct Interaction with LyrA (SpdC). Journal of Bacteriology, 2021, 203, .	1.0	8
209	Structural vaccinology to thwart antigenic variation in microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10029-10030.	3.3	7
210	Interaction of Staphylococci with Human B cells. PLoS ONE, 2016, 11, e0164410.	1.1	7
211	Classic Spotlight: Studies on the Low-Calcium Response of Yersinia pestis Reveal the Secrets of Plague Pathogenesis. Journal of Bacteriology, 2016, 198, 2018-2018.	1.0	7
212	Rapid pathogen identification and antimicrobial susceptibility testing in in vitro endophthalmitis with matrix assisted laser desorption-ionization Time-of-Flight Mass Spectrometry and VITEK 2 without prior culture. PLoS ONE, 2019, 14, e0227071.	1.1	7
213	Peptidoglycan Contribution to the B Cell Superantigen Activity of Staphylococcal Protein A. MBio, 2021, 12, .	1.8	7
214	Distinct Pathways Carry Out \hat{I}^{\pm} and \hat{I}^{2} Galactosylation of Secondary Cell Wall Polysaccharide in Bacillus anthracis. Journal of Bacteriology, 2020, 202, .	1.0	4
215	Staphylococcal Sortases and Surface Proteins. , 0, , 486-495.		4
216	Ubiquitin-Yop hybrids as probes for post-translational transport by the Yersinia type III secretion pathway. Molecular Microbiology, 2007, 65, 386-400.	1.2	3

#	Article	IF	CITATIONS
217	Rapid Pathogen Identification With Direct Application of MALDI-TOF Mass Spectrometry on an Endophthalmitis Vitreous Sample Without Prior Culture. Journal of Vitreoretinal Diseases, 2019, 3, 255-259.	0.2	3
218	Extraction and Purification of Wall-Bound Polymers of Gram-Positive Bacteria. Methods in Molecular Biology, 2019, 1954, 47-57.	0.4	3
219	Sortases, Surface Proteins, and Their Roles inStaphylococcus aureusDisease and Vaccine Development. , 2019, , 173-188.		3
220	What Genomics Has Taught Us about Gram-Positive Protein Secretion and Targeting. , 2014, , 301-326.		2
221	Classic Spotlight: Molecular Biology of Methicillin Resistance in Staphylococcus aureus. Journal of Bacteriology, 2016, 198, 1903-1903.	1.0	2
222	Staphylococcal Protein Secretion and Envelope Assembly. , 0, , 592-598.		2
223	Toward Optimization of a Rabbit Model of Staphylococcus aureus (USA300) Skin and Soft Tissue Infection. Microbiology Spectrum, 2022, 10, e0271621.	1.2	2
224	Type III machines of pathogenic yersiniae secrete virulence factors into the extracellular milieu. Molecular Microbiology, 1999, 34, 196-196.	1.2	1
225	Reply to Kernodle. Journal of Infectious Diseases, 2011, 203, 1693-1694.	1.9	1
226	Classic Spotlight: Selected Highlights from the First 100 Years of the $\mbox{\ensuremath{\mbox{\sc i}}}\mbox{\sc Journal}$ of Bacteriology, 2017, 199, .	1.0	0
227	Title is missing!. , 2019, 14, e0227071.		O
228	Title is missing!. , 2019, 14, e0227071.		0
229	Title is missing!. , 2019, 14, e0227071.		O
230	Title is missing!. , 2019, 14, e0227071.		0