
Edward T Kipreos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2227088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	cul-1 Is Required for Cell Cycle Exit in C. elegans and Identifies a Novel Gene Family. Cell, 1996, 85, 829-839.	28.9	420
2	CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature, 2003, 423, 885-889.	27.8	285
3	Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Division, 2008, 3, 7.	2.4	260
4	The CRL4 ^{Cdt2} ubiquitin ligase targets the degradation of p21 ^{Cip1} to control replication licensing. Genes and Development, 2008, 22, 2507-2519.	5.9	208
5	Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nature Genetics, 1999, 23, 245-248.	21.4	164
6	A CUL-2 Ubiquitin Ligase Containing Three FEM Proteins Degrades TRA-1 to Regulate C. elegans Sex Determination. Developmental Cell, 2007, 13, 127-139.	7.0	122
7	CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nature Cell Biology, 1999, 1, 486-492.	10.3	120
8	Evolution of Cyclin-Dependent Kinases (CDKs) and CDK-Activating Kinases (CAKs): Differential Conservation of CAKs in Yeast and Metazoa. Molecular Biology and Evolution, 2000, 17, 1061-1074.	8.9	103
9	Increased mitochondrial fusion allows the survival of older animals in diverse C. elegans longevity pathways. Nature Communications, 2017, 8, 182.	12.8	98
10	CUL-2 and ZYG-11 promote meiotic anaphase II and the proper placement of the anterior-posterior axis in C. elegans. Development (Cambridge), 2004, 131, 3513-3525.	2.5	82
11	C. elegans cell cycles: invariance and stem cell divisions. Nature Reviews Molecular Cell Biology, 2005, 6, 766-776.	37.0	74
12	CRL2LRR-1 Targets a CDK Inhibitor for Cell Cycle Control in C. elegans and Actin-Based Motility Regulation in Human Cells. Developmental Cell, 2010, 19, 753-764.	7.0	61
13	The Caenorhabditis elegans Replication Licensing Factor CDT-1 Is Targeted for Degradation by the CUL-4/DDB-1 Complex. Molecular and Cellular Biology, 2007, 27, 1394-1406.	2.3	55
14	Cyclin E expression during development in caenorhabditis elegans. Developmental Biology, 2003, 254, 102-115.	2.0	53
15	Enhanced resolution through thick tissue with structured illumination and adaptive optics. Journal of Biomedical Optics, 2015, 20, 026006.	2.6	52
16	Ubiquitin-mediated pathways in C. elegans. WormBook, 2005, , 1-24.	5.3	52
17	Emerging roles for folate receptor FOLR1 in signaling and cancer. Trends in Endocrinology and Metabolism, 2022, 33, 159-174.	7.1	49
18	The Caenorhabditis elegans cellâ€cycle regulator ZYGâ€11 defines a conserved family of CULâ€2 complex components. EMBO Reports, 2007, 8, 279-286.	4.5	44

EDWARD T KIPREOS

#	Article	IF	CITATIONS
19	C. elegans CUL-4 Prevents Rereplication by Promoting the Nuclear Export of CDC-6 via a CKI-1-Dependent Pathway. Current Biology, 2007, 17, 966-972.	3.9	44
20	The Energy Maintenance Theory of Aging: Maintaining Energy Metabolism to Allow Longevity. BioEssays, 2018, 40, e1800005.	2.5	37
21	Cancer driver candidate genes AVL9, DENND5A and NUPL1 contribute to MDCK cystogenesis. Oncoscience, 2014, 1, 854-865.	2.2	34
22	Bacterial Folates Provide an Exogenous Signal for C.Âelegans Germline Stem Cell Proliferation. Developmental Cell, 2016, 38, 33-46.	7.0	33
23	Developmental Control of the Cell Cycle: Insights from <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 797-829.	2.9	33
24	C. elegans CAND-1 regulates cullin neddylation, cell proliferation and morphogenesis in specific tissues. Developmental Biology, 2010, 346, 113-126.	2.0	32
25	The ubiquitin ligase CRL2ZYG11 targets cyclin B1 for degradation in a conserved pathway that facilitates mitotic slippage. Journal of Cell Biology, 2016, 215, 151-166.	5.2	31
26	FEM1 proteins are ancient regulators of SLBP degradation. Cell Cycle, 2017, 16, 556-564.	2.6	27
27	Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics. Nature Communications, 2021, 12, 3148.	12.8	25
28	Addressing a weakness of anticancer therapy with mitosis inhibitors: Mitotic slippage. Molecular and Cellular Oncology, 2017, 4, e1277293.	0.7	9
29	Dafachronic acid inhibits C. elegans germ cell proliferation in a DAF-12-dependent manner. Developmental Biology, 2017, 432, 215-221.	2.0	9
30	Implications of an Absolute Simultaneity Theory for Cosmology and Universe Acceleration. PLoS ONE, 2014, 9, e115550.	2.5	9
31	Assessment of the relativistic rotational transformations. Modern Physics Letters A, 2021, 36, 2150113.	1.2	8
32	Primary Culture System for Germ Cells from Caenorhabditis elegans Tumorous Germline Mutants. Bio-protocol, 2017, 7, .	0.4	2
33	Optical data implies a null simultaneity test theory parameter in rotating frames. Modern Physics	1.2	2