Natascha Kljun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2227024/publications.pdf

Version: 2024-02-01

101543 88630 5,588 77 36 70 citations g-index h-index papers 98 98 98 6593 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Simple Parameterisation for Flux Footprint Predictions. Boundary-Layer Meteorology, 2004, 112, 503-523.	2.3	611
2	A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geoscientific Model Development, 2015, 8, 3695-3713.	3.6	579
3	Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology, 2004, 126, 237-255.	4.8	430
4	Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agricultural and Forest Meteorology, 2006, 136, 237-251.	4.8	273
5	Climatic controls on the carbon and water balances of a boreal aspen forest, 1994?2003. Global Change Biology, 2007, 13, 561-576.	9.5	238
6	Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global Change Biology, 2006, 12, 294-310.	9 . 5	228
7	A Three-Dimensional Backward Lagrangian Footprint Model For A Wide Range Of Boundary-Layer Stratifications. Boundary-Layer Meteorology, 2002, 103, 205-226.	2.3	224
8	Flux and concentration footprint modelling: State of the art. Environmental Pollution, 2008, 152, 653-666.	7.5	199
9	Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sensing of Environment, 2014, 149, 118-129.	11.0	196
10	Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest. Agricultural and Forest Meteorology, 2004, 125, 207-223.	4.8	158
11	Response of Net Ecosystem Productivity of Three Boreal Forest Stands to Drought. Ecosystems, 2006, 9, 1128-1144.	3.4	129
12	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9 . 5	113
13	Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera. Remote Sensing, 2019, 11, 567.	4.0	111
14	Aboveground biomass density models for NASA's Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 2022, 270, 112845.	11.0	108
15	Remote sensing of photosynthetic light-use efficiency across two forested biomes: Spatial scaling. Remote Sensing of Environment, 2010, 114, 2863-2874.	11.0	107
16	Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data. Geoscientific Model Development, 2012, 5, 413-432.	3.6	94
17	Response of Net Ecosystem Productivity of Three Boreal Forest Stands to Drought. Ecosystems, 2007, 10, 1039-1055.	3.4	74
18	Integrating terrestrial and airborne lidar to calibrate a 3D canopy model of effective leaf area index. Remote Sensing of Environment, 2013, 136, 301-314.	11.0	73

#	Article	IF	Citations
19	Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis. Agricultural and Forest Meteorology, 2009, 149, 795-807.	4.8	71
20	The importance of interacting climate modes on Australia's contribution to global carbon cycle extremes. Scientific Reports, 2016, 6, 23113.	3.3	65
21	Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Global Change Biology, 2017, 23, 3231-3248.	9.5	65
22	Comparison of the Langrangian Footprint. Boundary-Layer Meteorology, 2003, 106, 349-355.	2.3	64
23	The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forestâ€wetland landscape. Global Change Biology, 2017, 23, 2413-2427.	9.5	63
24	Regional atmospheric cooling and wetting effect of permafrost thawâ€induced boreal forest loss. Global Change Biology, 2016, 22, 4048-4066.	9.5	60
25	ICOS eddy covariance flux-station site setup: a review. International Agrophysics, 2018, 32, 471-494.	1.7	59
26	Net ecosystem productivity of boreal aspen forests under drought and climate change: Mathematical modelling with Ecosys. Agricultural and Forest Meteorology, 2006, 140, 152-170.	4.8	56
27	Towards long-term standardised carbon and greenhouse gas observations for monitoring Europeâ∈™s terrestrial ecosystems: a review. International Agrophysics, 2018, 32, 439-455.	1.7	55
28	Productivity and evapotranspiration of two contrasting semiarid ecosystems following the 2011 global carbon land sink anomaly. Agricultural and Forest Meteorology, 2016, 220, 151-159.	4.8	54
29	Evaluation of Lagrangian footprint model using data from wind tunnel convective boundary layer. Agricultural and Forest Meteorology, 2004, 127, 189-201.	4.8	51
30	Determining carbon isotope signatures from micrometeorological measurements: Implications for studying biosphere–atmosphere exchange processes. Boundary-Layer Meteorology, 2007, 123, 295-316.	2.3	50
31	Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the "Angry Summer―of 2012/2013. Biogeosciences, 2016, 13, 5947-5964.	3.3	48
32	Drought constraints on transpiration and canopy conductance in mature aspen and jack pine stands. Agricultural and Forest Meteorology, 2006, 140, 64-78.	4.8	44
33	Spatial representativeness and uncertainty of eddy covariance carbon flux measurements for upscaling net ecosystem productivity to the grid scale. Agricultural and Forest Meteorology, 2016, 230-231, 114-127.	4.8	42
34	Interpreting CO2 Fluxes Over a Suburban Lawn: The Influence of Traffic Emissions. Boundary-Layer Meteorology, 2011, 138, 215-230.	2.3	38
35	Effect of spatial heterogeneity on the validation of remote sensing based GPP estimations. Agricultural and Forest Meteorology, 2013, 174-175, 43-53.	4.8	38
36	Characterizing vegetation structural and topographic characteristics sampled by eddy covariance within two mature aspen stands using lidar and a flux footprint model: Scaling to MODIS. Journal of Geophysical Research, $2011,116,116$	3.3	37

#	Article	lF	Citations
37	Comparison of conventional Lagrangian stochastic footprint models against LES driven footprint estimates. Atmospheric Chemistry and Physics, 2009, 9, 5575-5586.	4.9	32
38	Primary and secondary effects of climate variability on net ecosystem carbon exchange in an evergreen Eucalyptus forest. Agricultural and Forest Meteorology, 2013, 182-183, 248-256.	4.8	32
39	Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance understanding of land-atmosphere interactions. Agricultural and Forest Meteorology, 2021, 307, 108509.	4.8	31
40	Frontal modification and lee cyclogenesis in the Alps: A case study using the ALPEX reanalysis data set. Meteorology and Atmospheric Physics, 2001, 78, 89-105.	2.0	30
41	Effects of harvesting and drought on CO ₂ and H ₂ O fluxes in an aspen-dominated western boreal plain forest: early chronosequence recovery. Canadian Journal of Forest Research, 2015, 45, 87-100.	1.7	30
42	Monitoring boreal forest biomass and carbon storage change by integrating airborne laser scanning, biometry and eddy covariance data. Remote Sensing of Environment, 2016, 181, 82-95.	11.0	30
43	The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden. Agricultural and Forest Meteorology, 2019, 274, 29-41.	4.8	29
44	Technical note: DynamicÂlNtegrated Gap-filling and partitioning for OzFlux (DINGO). Biogeosciences, 2017, 14, 1457-1460.	3.3	28
45	The Net Landscape Carbon Balance—Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden. Global Change Biology, 2020, 26, 2353-2367.	9.5	28
46	Footprint Analysis. , 2012, , 211-261.		26
47	Methane fluxes from a small boreal lake measured with the eddy covariance method. Limnology and Oceanography, 2016, 61, S41.	3.1	25
48	Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model. Remote Sensing of Environment, 2017, 188, 177-189.	11.0	25
49	Slope Estimation from ICESat/GLAS. Remote Sensing, 2014, 6, 10051-10069.	4.0	23
50	Low-Density LiDAR and Optical Imagery for Biomass Estimation over Boreal Forest in Sweden. Forests, 2014, 5, 992-1010.	2.1	23
51	Intra-annual variability of wood formation and δ13C in tree-rings at HyytiÃѬ҈¤Finland. Agricultural and Forest Meteorology, 2016, 224, 17-29.	4.8	23
52	Eddy Covariance Flux Measurements of Gaseous Elemental Mercury Using Cavity Ring-Down Spectroscopy. Environmental Science & Eamp; Technology, 2015, 49, 1559-1568.	10.0	22
53	Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data. Remote Sensing, 2021, 13, 818.	4.0	19
54	Forest floor fluxes drive differences in the carbon balance of contrasting boreal forest stands. Agricultural and Forest Meteorology, 2021, 306, 108454.	4.8	18

#	Article	IF	Citations
55	Methane exchange in a boreal forest estimated by gradient method. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 26688.	1.6	16
56	Seasonal variation of source contributions to eddy-covariance CO2 measurements in a mixed hardwood-conifer forest. Agricultural and Forest Meteorology, 2018, 253-254, 71-83.	4.8	16
57	Impacts of Clear-Cutting of a Boreal Forest on Carbon Dioxide, Methane and Nitrous Oxide Fluxes. Forests, 2020, 11, 961.	2.1	16
58	Boreal forest soil carbon fluxes one year after a wildfire: Effects of burn severity and management. Global Change Biology, 2021, 27, 4181-4195.	9.5	16
59	Influences of vegetation structure and elevation on CO ₂ uptake in a mature jack pine forest in Saskatchewan, Canada. Canadian Journal of Forest Research, 2008, 38, 2746-2761.	1.7	15
60	Evaluating the use of spatially varying versus bulk average 3D vegetation structural inputs to modelled evapotranspiration within heterogeneous land cover types. Ecohydrology, 2014, 7, 1545-1559.	2.4	15
61	A numerical case study on footprint model performance under inhomogeneous flow conditions. Meteorologische Zeitschrift, 2010, 19, 539-547.	1.0	13
62	Using High Resolution LiDAR Data and a Flux Footprint Parameterization to Scale Evapotranspiration Estimates to Lower Pixel Resolutions. Canadian Journal of Remote Sensing, 2017, 43, 215-229.	2.4	12
63	Airâ€sea gas transfer in high Arctic fjords. Geophysical Research Letters, 2017, 44, 2519-2526.	4.0	10
64	Upscaling of methane exchange in a boreal forest using soil chamber measurements and high-resolution LiDAR elevation data. Agricultural and Forest Meteorology, 2015, 214-215, 393-401.	4.8	8
65	Modelling and upscaling ecosystem respiration using thermal cameras and UAVs: Application to a peatland during and after a hot drought. Agricultural and Forest Meteorology, 2021, 300, 108330.	4.8	8
66	ICESat/GLAS Canopy Height Sensitivity Inferred from Airborne Lidar. Photogrammetric Engineering and Remote Sensing, 2016, 82, 351-363.	0.6	7
67	Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems. Remote Sensing, 2017, 9, 59.	4.0	7
68	Methane efflux from an American bison herd. Biogeosciences, 2021, 18, 961-975.	3.3	7
69	Methodologies. , 2011, , 65-90.		6
70	Field-scale CH& It; sub& gt; 4& It; /sub& gt; emission at a subarctic mire with heterogeneous permafrost thaw status. Biogeosciences, 2021, 18, 5811-5830.	3.3	5
71	Spatial heterogeneity of soil carbon exchanges and their drivers in a boreal forest. Science of the Total Environment, 2022, 831, 154876.	8.0	5
72	Arable Lands. , 2011, , 157-197.		3

#	Article	IF	CITATIONS
73	Comment on: "Corrections to the Mathematical Formulation of a Backwards Lagrangian Particle Dispersion Model―by Gibson and Sailor (2012: Boundary-Layer Meteorology 145, 399–406). Boundary-Layer Meteorology, 2018, 166, 153-160.	2.3	1
74	Impacts of stump harvesting on carbon dioxide, methane and nitrous oxide fluxes. IForest, 2022, 15, 148-162.	1.4	1
75	Comparison of Light Use Efficiency, Plant Phenology Index, and Light Response Function-Based GPP Models in the Northern Forest Landscape. , 2021, , .		0
76	Arable Lands. , 2011, , 263-293.		0
77	Including the Urban Canopy Layer in a Lagrangian Particle Dispersion Model. Boundary-Layer Meteorology, 0, , .	2.3	0