
Thomas Günther

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2226937/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integration of Sequencing and Epidemiologic Data for Surveillance of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infections in a Tertiary-Care Hospital. Clinical Infectious Diseases, 2023, 76, e263-e273.	5.8	9
2	Dying of VOC-202012/01 — multimodal investigations in a death case of the SARS-CoV-2 variant. International Journal of Legal Medicine, 2022, 136, 193-202.	2.2	3
3	Comparing susceptibility and contagiousness in concurrent outbreaks with a non-VOC and the VOC SARS-CoV-2 variant B.1.1.7 in daycare centers in Hamburg, Germany. International Journal of Hygiene and Environmental Health, 2022, 240, 113928.	4.3	4
4	Molecular consequences of SARS-CoV-2 liver tropism. Nature Metabolism, 2022, 4, 310-319.	11.9	98
5	Clinical Evaluation of a Fully-Automated High-Throughput Multiplex Screening-Assay to Detect and Differentiate the SARS-CoV-2 B.1.1.529 (Omicron) and B.1.617.2 (Delta) Lineage Variants. Viruses, 2022, 14, 608.	3.3	5
6	High and Sustained Ex Vivo Frequency but Altered Phenotype of SARS-CoV-2-Specific CD4+ T-Cells in an Anti-CD20-Treated Patient with Prolonged COVID-19. Viruses, 2022, 14, 1265.	3.3	5
7	Transcriptional behavior of the HIV-1 promoter in context of the BACH2 prominent proviral integration gene. Virus Research, 2021, 293, 198260.	2.2	3
8	SARS Coronavirus-2 variant tracing within the first Coronavirus Disease 19 clusters in northern Germany. Clinical Microbiology and Infection, 2021, 27, 130.e5-130.e8.	6.0	14
9	SARS-CoV-2 Reinfection in a Healthcare Worker Despite the Presence of Detectable Neutralizing Antibodies. Viruses, 2021, 13, 661.	3.3	27
10	Rapid Automated Screening for SARS-CoV-2 B.1.617 Lineage Variants (Delta/Kappa) through a Versatile Toolset of qPCR-Based SNP Detection. Diagnostics, 2021, 11, 1818.	2.6	12
11	The chromatin insulator CTCF regulates HPV18 transcript splicing and differentiation-dependent late gene expression. PLoS Pathogens, 2021, 17, e1010032.	4.7	13
12	Yersinia remodels epigenetic histone modifications in human macrophages. PLoS Pathogens, 2021, 17, e1010074.	4.7	3
13	Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication Is Independent of Anaphase-Promoting Complex Activity. Journal of Virology, 2020, 94, .	3.4	1
14	Kaposi's Sarcoma-Associated Herpesvirus Reactivation by Targeting of a dCas9-Based Transcription Activator to the ORF50 Promoter. Viruses, 2020, 12, 952.	3.3	3
15	High-resolution analysis of Merkel Cell Polyomavirus in Merkel Cell Carcinoma reveals distinct integration patterns and suggests NHEJ and MMBIR as underlying mechanisms. PLoS Pathogens, 2020, 16, e1008562.	4.7	24
16	Kaposi's Sarcoma-Associated Herpesvirus Drives a Super-Enhancer-Mediated Survival Gene Expression Program in Primary Effusion Lymphoma. MBio, 2020, 11, .	4.1	13
17	Brd/BET Proteins Influence the Genome-Wide Localization of the Kaposi's Sarcoma-Associated Herpesvirus and Murine Gammaherpesvirus Major Latency Proteins. Frontiers in Microbiology, 2020, 11, 591778.	3.5	7
18	Merkel Cell Polyomavirus DNA Replication Induces Senescence in Human Dermal Fibroblasts in a Kap1/Trim28-Dependent Manner. MBio, 2020, 11, .	4.1	15

THOMAS GüNTHER

#	Article	IF	CITATIONS
19	Complete Genome Sequence of a SARS-CoV-2 Strain Isolated in Northern Germany. Microbiology Resource Announcements, 2020, 9, .	0.6	23
20	Oncogenic Herpesvirus Engages Endothelial Transcription Factors SOX18 and PROX1 to Increase Viral Genome Copies and Virus Production. Cancer Research, 2020, 80, 3116-3129.	0.9	17
21	Cellular Importin-α3 Expression Dynamics in the Lung Regulate Antiviral Response Pathways against Influenza A Virus Infection. Cell Reports, 2020, 31, 107549.	6.4	11
22	ANP32B Deficiency Protects Mice From Lethal Influenza A Virus Challenge by Dampening the Host Immune Response. Frontiers in Immunology, 2020, 11, 450.	4.8	12
23	SARS oVâ€2 outbreak investigation in a German meat processing plant. EMBO Molecular Medicine, 2020, 12, e13296.	6.9	137
24	A comparative epigenome analysis of gammaherpesviruses suggests cis-acting sequence features as critical mediators of rapid polycomb recruitment. PLoS Pathogens, 2019, 15, e1007838.	4.7	23
25	Repression of Human Papillomavirus Oncogene Expression under Hypoxia Is Mediated by PI3K/mTORC2/AKT Signaling. MBio, 2019, 10, .	4.1	32
26	The Viral Bcl-2 Homologs of Kaposi's Sarcoma-Associated Herpesvirus and Rhesus Rhadinovirus Share an Essential Role for Viral Replication. Journal of Virology, 2017, 91, .	3.4	26
27	Epigenetic manipulation of host chromatin by Kaposi sarcoma-associated herpesvirus: a tumor-promoting factor?. Current Opinion in Virology, 2017, 26, 104-111.	5.4	4
28	Recovery of the first full-length genome sequence of a parapoxvirus directly from a clinical sample. Scientific Reports, 2017, 7, 3734.	3.3	48
29	First report of Escherichia coli co-producing NDM-1 and OXA-232. Diagnostic Microbiology and Infectious Disease, 2016, 86, 437-438.	1.8	15
30	Investigation of Viral and Host Chromatin by ChIPâ€₽CR or ChIP‣eq Analysis. Current Protocols in Microbiology, 2016, 40, 1E.10.1-1E.10.21.	6.5	9
31	A Comprehensive Analysis of Replicating Merkel Cell Polyomavirus Genomes Delineates the Viral Transcription Program and Suggests a Role for mcv-miR-M1 in Episomal Persistence. PLoS Pathogens, 2015, 11, e1004974.	4.7	64
32	Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance. Science Advances, 2015, 1, e1500723.	10.3	112
33	Generation and Characterization of an Nse-CreERT2 Transgenic Line Suitable for Inducible Gene Manipulation in Cerebellar Granule Cells. PLoS ONE, 2014, 9, e100384.	2.5	10
34	Influence of ND10 Components on Epigenetic Determinants of Early KSHV Latency Establishment. PLoS Pathogens, 2014, 10, e1004274.	4.7	53
35	Rapid Metagenomic Diagnostics for Suspected Outbreak of Severe Pneumonia. Emerging Infectious Diseases, 2014, 20, 1072-1075.	4.3	61
36	Lysine-specific demethylase 1 regulates differentiation onset and migration of trophoblast stem cells. Nature Communications, 2014, 5, 3174.	12.8	55

THOMAS GüNTHER

#	Article	IF	CITATIONS
37	LSD1 promotes oxidative metabolism of white adipose tissue. Nature Communications, 2014, 5, 4093.	12.8	96
38	Activation of the B Cell Antigen Receptor Triggers Reactivation of Latent Kaposi's Sarcoma-Associated Herpesvirus in B Cells. Journal of Virology, 2013, 87, 8004-8016.	3.4	49
39	A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. Journal of Experimental Medicine, 2012, 209, 35-50.	8.5	67
40	KSHV-Initiated Notch Activation Leads to Membrane-Type-1 Matrix Metalloproteinase-Dependent Lymphatic Endothelial-to-Mesenchymal Transition. Cell Host and Microbe, 2011, 10, 577-590.	11.0	123
41	Kaposi's Sarcoma-Associated Herpesvirus Bacterial Artificial Chromosome Contains a Duplication of a Long Unique-Region Fragment within the Terminal Repeat Region. Journal of Virology, 2011, 85, 4612-4617.	3.4	35
42	Studies of intestinal morphology and cathepsin B expression in a transgenic mouse aiming at intestine-specific expression of Cath B-EGFP. Biological Chemistry, 2011, 392, 983-93.	2.5	5
43	Phosphorylation of histone H3T6 by PKCβI controls demethylation at histone H3K4. Nature, 2010, 464, 792-796.	27.8	259
44	The Epigenetic Landscape of Latent Kaposi Sarcoma-Associated Herpesvirus Genomes. PLoS Pathogens, 2010, 6, e1000935.	4.7	227
45	Cell Type-specific Functions of the Lysosomal Protease Cathepsin L in the Heart. Journal of Biological Chemistry, 2007, 282, 37045-37052.	3.4	52
46	Deficiency in the LIM-only protein Fhl2 impairs skin wound healing. Journal of Cell Biology, 2007, 177, 163-172.	5.2	75
47	Fat or bone? A non-canonical decision. Nature Cell Biology, 2007, 9, 1229-1231.	10.3	11
48	Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nature Cell Biology, 2007, 9, 347-353.	10.3	546
49	Long-range upstream and downstream enhancers control distinct subsets of the complex spatiotemporal Sox9 expression pattern. Developmental Biology, 2006, 291, 382-397.	2.0	148
50	Fhl2 deficiency results in osteopenia due to decreased activity of osteoblasts. EMBO Journal, 2005, 24, 3049-3056.	7.8	60
51	LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 2005, 437, 436-439.	27.8	1,540
52	Development of Parathyroid Glands. , 2005, , 1-7.		2
53	The human cysteine protease cathepsin V can compensate for murine cathepsin L in mouse epidermis and hair follicles. European Journal of Cell Biology, 2004, 83, 775-780.	3.6	48
54	The LIM-only coactivator FHL2 modulates WT1 transcriptional activity during gonadal differentiation. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 93-101.	2.4	57

Thomas Günther

#	Article	IF	CITATIONS
55	Mouse Genetics Have Uncovered New Paradigms in Bone Biology. Trends in Endocrinology and Metabolism, 2000, 11, 189-193.	7.1	25
56	Specific expression in mouse mesoderm- and neural crest-derived tissues of a human PDGFRA promoter/lacZ transgene. Mechanisms of Development, 1998, 70, 167-180.	1.7	23
57	The Expression of the MouseZic1, Zic2,andZic3Gene Suggests an Essential Role forZicGenes in Body Pattern Formation. Developmental Biology, 1997, 182, 299-313.	2.0	307
58	The open brain (opb) mutation maps to mouse chromosome 1. Mammalian Genome, 1997, 8, 583-585.	2.2	7
59	Use of Transgenic Animals in Skeleton Biology. , 0, , 385-399.		Ο