Bonnie Ann Wallace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2226690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 2004, 32, W668-W673.	6.5	2,106
2	Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers, 2008, 89, 392-400.	1.2	1,969
3	HOLE: A program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics, 1996, 14, 354-360.	1.7	1,425
4	DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra. Bioinformatics, 2002, 18, 211-212.	1.8	677
5	The pore dimensions of gramicidin A. Biophysical Journal, 1993, 65, 2455-2460.	0.2	595
6	A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics, 2006, 22, 1955-1962.	1.8	395
7	Path of the polypeptide in bacteriorhodopsin Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 2023-2027.	3.3	393
8	Model ion channels: Gramicidin and alamethicin. Journal of Membrane Biology, 1992, 129, 109-36.	1.0	261
9	The gramicidin pore: crystal structure of a cesium complex. Science, 1988, 241, 182-187.	6.0	257
10	Structure of a bacterial voltage-gated sodium channel pore reveals mechanisms of opening and closing. Nature Communications, 2012, 3, 1102.	5.8	255
11	Modelling insecticide-binding sites in the voltage-gated sodium channel. Biochemical Journal, 2006, 396, 255-263.	1.7	248
12	Circular dichroism spectroscopy of membrane proteins. Chemical Society Reviews, 2016, 45, 4859-4872.	18.7	234
13	CDtool—an integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Analytical Biochemistry, 2004, 332, 285-289.	1.1	233
14	Screening of a library of phage-displayed peptides identifies human Bcl-2 as a taxol-binding protein 1 1Edited by I. A. Wilson. Journal of Molecular Biology, 1999, 285, 197-203.	2.0	231
15	Differential light scattering and absorption flattening optical effects are minimal in the circular dichroism spectra of small unilamellar vesicles. Biochemistry, 1984, 23, 2667-2673.	1.2	230
16	Synchrotron radiation circular dichroism spectroscopy of proteins and applications in structural and functional genomics. Chemical Society Reviews, 2006, 35, 39-51.	18.7	218
17	<scp>DichroWeb</scp> , a website for calculating protein secondary structure from circular dichroism spectroscopic data. Protein Science, 2022, 31, 37-46.	3.1	208
18	Peptaibols: models for ion channels. Biochemical Society Transactions, 2001, 29, 565-570.	1.6	194

#	Article	IF	CITATIONS
19	Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry, 1985, 24, 1915-1920.	1.2	185
20	Gramicidin Channels and Pores. Annual Review of Biophysics and Biophysical Chemistry, 1990, 19, 127-157.	12.2	185
21	Folding of the mitochondrial proton adenosine triphosphatase proteolipid channel in phospholipid vesicles. Biochemistry, 1982, 21, 4960-4968.	1.2	174
22	Conformation of gramicidin A channel in phospholipid vesicles: a 13C and 19F nuclear magnetic resonance study Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 4230-4234.	3.3	166
23	Recent Advances in the High Resolution Structures of Bacterial Channels: Gramicidin A. Journal of Structural Biology, 1998, 121, 123-141.	1.3	162
24	Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. Biochemistry, 1981, 20, 5754-5760.	1.2	161
25	Structure of gramicidin A. Biophysical Journal, 1986, 49, 295-306.	0.2	157
26	The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Research, 2004, 32, 593D-594.	6.5	154
27	Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: Applications in secondary structure analyses. Protein Science, 2014, 23, 1765-1772.	3.1	151
28	Analyses of circular dichroism spectra of membrane proteins. Protein Science, 2003, 12, 875-884.	3.1	149
29	Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6364-6369.	3.3	149
30	A reference dataset for the analyses of membrane protein secondary structures and transmembrane residues using circular dichroism spectroscopy. Bioinformatics, 2011, 27, 1630-1636.	1.8	135
31	Differential absorption flattening optical effects are significant in the circular dichroism spectra of large membrane fragments. Biochemistry, 1987, 26, 65-70.	1.2	131
32	Synchrotron radiation circular dichroism spectroscopy of proteins: secondary structure, fold recognition and structural genomics. Current Opinion in Chemical Biology, 2001, 5, 567-571.	2.8	129
33	Conformation of the gramicidin A transmembrane channel: A 13C nuclear magnetic resonance study of 13C-enriched gramicidin in phosphatidylcholine vesicles. Journal of Molecular Biology, 1980, 143, 1-19.	2.0	126
34	Slow α Helix Formation during Folding of a Membrane Protein. Biochemistry, 1997, 36, 192-196.	1.2	122
35	Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8428-8433.	3.3	120
36	The complete structure of an activated open sodium channel. Nature Communications, 2017, 8, 14205.	5.8	118

#	Article	IF	CITATIONS
37	Voltage-gated sodium channels as targets for pyrethroid insecticides. European Biophysics Journal, 2017, 46, 675-679.	1.2	116
38	Modelling of a voltage-dependent Ca2+channel β subunit as a basis for understanding its functional properties. FEBS Letters, 1999, 445, 366-370.	1.3	114
39	2Struc: the secondary structure server. Bioinformatics, 2010, 26, 2624-2625.	1.8	110
40	Characterization and Membrane Assembly of the TatA Component of the Escherichia coli Twin-Arginine Protein Transport System. Biochemistry, 2002, 41, 13690-13697.	1.2	108
41	Crystal Structure of a vFlip-IKKÎ ³ Complex: Insights into Viral Activation of the IKK Signalosome. Molecular Cell, 2008, 30, 620-631.	4.5	108
42	Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review. Chemical Society Reviews, 2021, 50, 8400-8413.	18.7	107
43	Circular dichroism analyses of membrane proteins: An examination of differential light scattering and absorption flattening effects in large membrane vesicles and membrane sheets. Analytical Biochemistry, 1984, 142, 317-328.	1.1	104
44	Protein characterisation by synchrotron radiation circular dichroism spectroscopy. Quarterly Reviews of Biophysics, 2009, 42, 317-370.	2.4	99
45	Structure and Function of Voltage-Dependent Ion Channel Regulatory Î ² Subunits. Biochemistry, 2002, 41, 2886-2894.	1.2	95
46	Molecular basis of ion permeability in a voltageâ€gated sodium channel. EMBO Journal, 2016, 35, 820-830.	3.5	95
47	The P23T Cataract Mutation Causes Loss of Solubility of Folded γD-Crystallin. Journal of Molecular Biology, 2004, 343, 435-444.	2.0	93
48	Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism beamlines. Journal of Synchrotron Radiation, 2008, 15, 420-422.	1.0	91
49	Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nature Communications, 2014, 5, 4863.	5.8	91
50	The crystal structure of human endothelin. Nature Structural and Molecular Biology, 1994, 1, 311-319.	3.6	90
51	CDtoolX, a downloadable software package for processing and analyses of circular dichroism spectroscopic data. Protein Science, 2018, 27, 1717-1722.	3.1	89
52	Calibration and Standardisation of Synchrotron Radiation Circular Dichroism and Conventional Circular Dichroism Spectrophotometers. Spectroscopy, 2003, 17, 653-661.	0.8	86
53	Synchrotron Radiation Circular Dichroism (SRCD) spectroscopy: New beamlines and new applications in biology. Spectroscopy, 2007, 21, 245-255.	0.8	85
54	PCDDB: the protein circular dichroism data bank, a repository for circular dichroism spectral and metadata. Nucleic Acids Research, 2011, 39, D480-D486.	6.5	79

#	Article	IF	CITATIONS
55	Evaluation of methods for the prediction of membrane protein secondary structures Proceedings of the United States of America, 1986, 83, 9423-9427.	3.3	78
56	Common structural features in gramicidin and other ion channels. BioEssays, 2000, 22, 227-234.	1.2	76
57	Synchrotron radiation circular-dichroism spectroscopy as a tool for investigating protein structures. Journal of Synchrotron Radiation, 2000, 7, 289-295.	1.0	74
58	Structural insights into the dynamics and function of the C-terminus of the E. coli RNA chaperone Hfq. Nucleic Acids Research, 2011, 39, 4900-4915.	6.5	74
59	Opsin Stability and Folding: Modulation by Phospholipid Bicelles. Journal of Molecular Biology, 2007, 374, 1319-1332.	2.0	73
60	A model for Batten disease protein CLN3: Functional implications from homology and mutations. FEBS Letters, 1996, 399, 75-77.	1.3	71
61	Role of the C-terminal domain in the structure and function of tetrameric sodium channels. Nature Communications, 2013, 4, 2465.	5.8	71
62	The structure and function of antiamoebin I, a proline-rich membrane-active polypeptide. Structure, 1998, 6, 783-792.	1.6	68
63	Gramicidin a adopts distinctly different conformations in membranes and in organic solvents. Biopolymers, 1983, 22, 397-402.	1.2	67
64	Surface architecture of endospores of the <i>Bacillus cereus/anthracis/thuringiensis</i> family at the subnanometer scale. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16014-16019.	3.3	67
65	Changes in β-Lactoglobulin Conformation at the Oil/Water Interface of Emulsions Studied by Synchrotron Radiation Circular Dichroism Spectroscopy. Biomacromolecules, 2010, 11, 2136-2142.	2.6	66
66	Calcium Fluoride Micro Cells for Synchrotron Radiation Circular Dichroism Spectroscopy. Applied Spectroscopy, 2005, 59, 1109-1113.	1.2	65
67	Knockdown resistance to DDT and pyrethroids: from targetâ€site mutations to molecular modelling. Pest Management Science, 2008, 64, 1126-1130.	1.7	65
68	The Metastasis-Associated Extracellular Matrix Protein Osteopontin Forms Transient Structure in Ligand Interaction Sites. Biochemistry, 2011, 50, 6113-6124.	1.2	64
69	Bisphenol A Binds to the Local Anesthetic Receptor Site to Block the Human Cardiac Sodium Channel. PLoS ONE, 2012, 7, e41667.	1.1	63
70	Model for a Helical Bundle Channel Based on the High-Resolution Crystal Structure of Trichotoxin_A50E. Biochemistry, 2002, 41, 12934-12941.	1.2	62
71	Conformation of alamethicin in phospholipid vesicles: Implications for insertion models. Proteins: Structure, Function and Bioinformatics, 1988, 4, 89-98.	1.5	60
72	NaChBac: The Long Lost Sodium Channel Ancestor. Biochemistry, 2011, 50, 6742-6752.	1.2	60

#	Article	IF	CITATIONS
73	Location of the carboxyl terminus of bacteriorhodopsin in purple membrane. Biophysical Journal, 1982, 39, 233-239.	0.2	58
74	Gramicidin channel controversyrevisited. Nature Structural Biology, 1999, 6, 610-611.	9.7	58
75	Role of the Protective Antigen Octamer in the Molecular Mechanism of Anthrax Lethal Toxin Stabilization in Plasma. Journal of Molecular Biology, 2010, 399, 741-758.	2.0	58
76	Secondary structural composition of the Na/K-ATPase E1 and E2 conformers Journal of Biological Chemistry, 1984, 259, 2622-2628.	1.6	58
77	Temperature dependence of the interaction of alamethicin helixes in membranes. Biochemistry, 1993, 32, 9819-9825.	1.2	57
78	Crystal structure of the Gramicidin/Potassium thiocyanate complex. Journal of Molecular Biology, 1997, 266, 963-977.	2.0	54
79	Calibration and standardisation of synchrotron radiation and conventional circular dichroism spectrometers. Part 2: Factors affecting magnitude and wavelength. Spectroscopy, 2005, 19, 43-51.	0.8	54
80	Spectral magnitude effects on the analyses of secondary structure from circular dichroism spectroscopic data. Protein Science, 2005, 14, 368-374.	3.1	53
81	Charge-Transfer Transitions in the Vacuum-Ultraviolet of Protein Circular Dichroism Spectra. Journal of Physical Chemistry B, 2008, 112, 1866-1874.	1.2	53
82	PCDDB: new developments at the Protein Circular Dichroism Data Bank. Nucleic Acids Research, 2017, 45, D303-D307.	6.5	52
83	Conformational changes by synchrotron radiation circular dichroism spectroscopy. , 2000, 7, 708-709.		51
84	The E1→E2 transition of Ca2+-transporting ATPase in sarcoplasmic reticulum occurs without major changes in secondary structure. A circular-dichroism study. Biochemical Journal, 1987, 241, 663-669.	1.7	49
85	Secondary structural composition of the Na/K-ATPase E1 and E2 conformers. Journal of Biological Chemistry, 1984, 259, 2622-8.	1.6	49
86	Modeling and Docking the Endothelin G-Protein-Coupled Receptor. Biophysical Journal, 2000, 79, 3083-3094.	0.2	48
87	Consistent Picture of the Reversible Thermal Unfolding of Hen Egg-White Lysozyme from Experiment and Molecular Dynamics. Biophysical Journal, 2010, 99, 2255-2263.	0.2	48
88	Structural model of the open–closed–inactivated cycle of prokaryotic voltage-gated sodium channels. Journal of General Physiology, 2015, 145, 5-16.	0.9	47
89	Secondary structural analyses of the nicotinic acetylcholine receptor as a test of molecular models Journal of Biological Chemistry, 1988, 263, 3177-3182.	1.6	47
90	The peptaibol database: a sequence and structure resource. Journal of Peptide Science, 2003, 9, 663-665.	0.8	45

#	Article	IF	CITATIONS
91	Interactions of the Type III Secretion Pathway Proteins LcrV and LcrG from Yersinia pestis Are Mediated by Coiled-Coil Domains. Journal of Biological Chemistry, 2002, 277, 38714-38722.	1.6	44
92	Effects of Deglycosylation of Sodium Channels on Their Structure and Function. Biochemistry, 2005, 44, 441-449.	1.2	44
93	Synchrotron radiation circular dichroism (SRCD) spectroscopy: an enhanced method for examining protein conformations and protein interactions. Biochemical Society Transactions, 2010, 38, 861-873.	1.6	44
94	Redetermination of the extinction coefficient of camphor-10-sulfonic acid, a calibration standard for circular dichroism spectroscopy. Analytical Biochemistry, 2004, 335, 338-339.	1.1	43
95	Ion-Bond Forms of the Gramicidin a Transmembrane Channel. Biophysical Journal, 1984, 45, 114-116.	0.2	42
96	VUV irradiation effects on proteins in high-flux synchrotron radiation circular dichroism spectroscopy. Journal of Synchrotron Radiation, 2005, 12, 517-523.	1.0	41
97	Synchrotron radiation circular dichroism spectroscopy-defined structure of the C-terminal domain of NaChBac and its role in channel assembly. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14064-14069.	3.3	41
98	Predictive <scp>3D</scp> modelling of the interactions of pyrethroids with the voltageâ€gated sodium channels of ticks and mites. Pest Management Science, 2014, 70, 369-377.	1.7	41
99	Binding of fibronectin to phospholipid vesicles Journal of Biological Chemistry, 1983, 258, 3327-3331.	1.6	41
100	Binding of the Anticonvulsant Drug Lamotrigine and the Neurotoxin Batrachotoxin to Voltage-gated Sodium Channels Induces Conformational Changes Associated with Block and Steady-state Activation. Journal of Biological Chemistry, 2003, 278, 10675-10682.	1.6	40
101	A Pore-blocking Hydrophobic Motif at the Cytoplasmic Aperture of the Closed-state Nav1.7 Channel Is Disrupted by the Erythromelalgia-associated F1449V Mutation. Journal of Biological Chemistry, 2008, 283, 24118-24127.	1.6	40
102	The Protein Circular Dichroism Data Bank, A Web-Based Site for Access to Circular Dichroism Spectroscopic Data. Structure, 2010, 18, 1267-1269.	1.6	40
103	Cannabidiol interactions with voltage-gated sodium channels. ELife, 2020, 9, .	2.8	40
104	Analysis of peptaibol sequence composition: implications for in vivo synthesis and channel formation. European Biophysics Journal, 2004, 33, 233-7.	1.2	39
105	Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance. Biophysical Journal, 2011, 100, 2394-2402.	0.2	39
106	Lipid binding attenuates channel closure of the outer membrane protein OmpF. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6691-6696.	3.3	39
107	Secondary structural analyses of the nicotinic acetylcholine receptor as a test of molecular models. Journal of Biological Chemistry, 1988, 263, 3177-82.	1.6	39
108	Alamethicin Pyromellitate: An Ion-Activated Channel-Forming Peptide. Biochemistry, 1994, 33, 6850-6858.	1.2	37

#	Article	IF	CITATIONS
109	Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1863-1872.	1.4	37
110	The influence of lipid state on the planar distribution of membrane proteins in Acholeplasma laidlawii. Journal of Molecular Biology, 1976, 107, 255-269.	2.0	36
111	Solvent effects on the conformation and far UV CD spectra of gramicidin. , 1997, 42, 771-781.		36
112	Phospholipid chain length alters the equilibrium between pore and channel forms of gramicidin. Faraday Discussions, 1999, 111, 159-164.	1.6	36
113	Transmembrane Peptide NB of Influenza B: A Simulation, Structure, and Conductance Studyâ€. Biochemistry, 2000, 39, 12708-12716.	1.2	36
114	Tryptophans in Membrane Proteins. Advances in Experimental Medicine and Biology, 1999, 467, 789-799.	0.8	36
115	Circular-dichroism analyses of membrane proteins: examination of environmental effects on bacteriorhodopsin spectra. Biochemical Journal, 1993, 289, 215-219.	1.7	35
116	Solution Structure of a Parallel Left-handed Double-helical Gramicidin-A Determined by 2D1H NMR. Journal of Molecular Biology, 1996, 264, 757-769.	2.0	35
117	Structure and function of PspA and Vipp1 N-terminal peptides: Insights into the membrane stress sensing and mitigation. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 28-39.	1.4	35
118	The secondary structure of gap junctions. Influence of isolation methods and proteolysis Journal of Biological Chemistry, 1990, 265, 2358-2364.	1.6	35
119	Binding of fibronectin to phospholipid vesicles. Journal of Biological Chemistry, 1983, 258, 3327-31.	1.6	35
120	Secondary solvent effects on the circular dichroism spectra of polypeptides in non-aqueous environments: influence of polarisation effects on the far ultraviolet spectra of alamethicin. Biophysical Chemistry, 1997, 65, 65-74.	1.5	34
121	Shaped Apertures in Photoresist Films Enhance the Lifetime and Mechanical Stability of Suspended Lipid Bilayers. Biophysical Journal, 2014, 106, 1650-1659.	0.2	34
122	The planar distributions of surface proteins and intramembrane particles in Acholeplasma laidlawii are differentially affected by the physical state of membrane lipids. Biochimica Et Biophysica Acta - Biomembranes, 1978, 508, 431-449.	1.4	33
123	A comparison of Xâ€ray and NMR structures for human endothelinâ€1. Protein Science, 1995, 4, 75-83.	3.1	33
124	Biomedical applications of synchrotron radiation circular dichroism spectroscopy: Identification of mutant proteins associated with disease and development of a reference database for fold motifs. Faraday Discussions, 2004, 126, 237.	1.6	33
125	The role of circular dichroism spectroscopy in the era of integrative structural biology. Current Opinion in Structural Biology, 2019, 58, 191-196.	2.6	33
126	Antiamoebin can function as a carrier or as a pore-forming peptaibol. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1415, 255-260.	1.4	32

#	Article	IF	CITATIONS
127	Effects of Local Environment on the Circular Dichroism Spectra of Polypeptides. Analytical Biochemistry, 1995, 227, 90-100.	1.1	31
128	Simplified Bacterial "Pore―Channel Provides Insight into the Assembly, Stability, and Structure of Sodium Channels. Journal of Biological Chemistry, 2011, 286, 16386-16391.	1.6	31
129	Co-crystals of gramicidin A and phospholipid. Journal of Molecular Biology, 1991, 217, 625-627.	2.0	30
130	The secondary structure of gap junctions. Influence of isolation methods and proteolysis. Journal of Biological Chemistry, 1990, 265, 2358-64.	1.6	30
131	The Protein Circular Dichroism Data Bank (PCDDB): A bioinformatics and spectroscopic resource. Proteins: Structure, Function and Bioinformatics, 2005, 62, 1-3.	1.5	29
132	Lipid interactions of LAH4, a peptide with antimicrobial and nucleic acid transfection activities. European Biophysics Journal, 2014, 43, 499-507.	1.2	29
133	Evaluating protein:protein complex formation using synchrotron radiation circular dichroism spectroscopy. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1142-1146.	1.5	28
134	Crystallographic studies of a transmembrane ion channel, gramicidin A. Progress in Biophysics and Molecular Biology, 1992, 57, 59-69.	1.4	26
135	Novel methods for secondary structure determination using low wavelength (VUV) circular dichroism spectroscopic data. BMC Bioinformatics, 2006, 7, 507.	1.2	26
136	The effects of lipids on the structure of the eukaryotic cytolysin equinatoxin II: A synchrotron radiation circular dichroism spectroscopic study. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2091-2096.	1.4	26
137	Conductance Studies on Trichotoxin_A50E and Implications for Channel Structure. Biophysical Journal, 2004, 87, 1705-1710.	0.2	25
138	Conformation of an oligopeptide in phospholipid vesicles Proceedings of the National Academy of Sciences of the United States of America, 1979, 76, 1775-1779.	3.3	24
139	Crambin in phospholipid vesicles: Circular dichroism analysis of crystal structure relevance. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 1406-1410.	3.3	24
140	Synchrotron radiation circular dichroism and conventional circular dichroism spectroscopy: A comparison. Spectroscopy, 2002, 16, 121-125.	0.8	24
141	Solution NMR Studies of Antiamoebin, a Membrane Channel-Forming Polypeptide. Biophysical Journal, 2003, 84, 185-194.	0.2	24
142	Thermal and chemical unfolding and refolding of a eukaryotic sodium channel. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1279-1286.	1.4	24
143	Synchrotron radiation circular dichroism (SRCD) spectroscopy: An emerging method in structural biology for examining protein conformations and protein interactions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 649, 177-178.	0.7	24
144	Association of Neonicotinoid Insensitivity with a Conserved Residue in the Loop D Binding Region of the Tick Nicotinic Acetylcholine Receptor. Biochemistry, 2012, 51, 4627-4629.	1.2	24

#	Article	IF	CITATIONS
145	Cystine nooses and protein specificity. Nature Structural and Molecular Biology, 1995, 2, 266-268.	3.6	22
146	Shifting the Equilibrium Mixture of Gramicidin Double Helices Toward a Single Conformation with Multivalent Cationic Salts. Biophysical Journal, 1998, 75, 635-640.	0.2	22
147	Tetrameric Bacterial Sodium Channels: Characterization of Structure, Stability, and Drug Binding. Biochemistry, 2008, 47, 8114-8121.	1.2	22
148	Association of partially folded lens βB2-crystallins with the α-crystallin molecular chaperone. Biochemical Journal, 2008, 409, 691-699.	1.7	22
149	Comparison of lipid/gramicidin dispersions and cocrystals by Raman scattering. Biochemistry, 1987, 26, 557-562.	1.2	21
150	Analyses of ligand binding in five endothiapepsin crystal complexes and their use in the design and evaluation of novel renin inhibitors. Journal of Medicinal Chemistry, 1993, 36, 3809-3820.	2.9	21
151	Circular dichroism and synchrotron radiation circular dichroism spectroscopy: tools for drug discovery. Biochemical Society Transactions, 2003, 31, 631-633.	1.6	21
152	Folding Factors and Partners for the Intrinsically Disordered Protein Micro-Exon Gene 14 (MEG-14). Biophysical Journal, 2013, 104, 2512-2520.	0.2	21
153	Deconstructing the DGAT1 enzyme: Binding sites and substrate interactions. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 3145-3152.	1.4	21
154	An evolutionarilyâ€unique heterodimeric voltageâ€gated cation channel found in aphids. FEBS Letters, 2015, 589, 598-607.	1.3	21
155	Differential dehydration effects on globular proteins and intrinsically disordered proteins during film formation. Protein Science, 2017, 26, 718-726.	3.1	21
156	AcrB contamination in 2-D crystallization of membrane proteins: Lessons from a sodium channel and a putative monovalent cation/proton antiporter. Journal of Structural Biology, 2011, 176, 419-424.	1.3	20
157	Valproic acid interactions with the NavMs voltage-gated sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26549-26554.	3.3	20
158	A tamoxifen receptor within a voltage-gated sodium channel. Molecular Cell, 2021, 81, 1160-1169.e5.	4.5	19
159	The use of single-wavelength anomalous scattering to solve the crystal structure of a gramicidin A/caesium chloride complex. Acta Crystallographica Section B: Structural Science, 1990, 46, 440-446.	1.8	18
160	Structure of the CLN3 Gene and Predicted Structure, Location and Function of CLN3 Protein. Neuropediatrics, 1997, 28, 12-14.	0.3	18
161	The influence of different lipid environments on the structure and function of the hepatitis C virus p7 ion channel protein. Molecular Membrane Biology, 2011, 28, 254-264.	2.0	18
162	Differential Lipid Dependence of the Function of Bacterial Sodium Channels. PLoS ONE, 2013, 8, e61216.	1.1	18

#	Article	IF	CITATIONS
163	The intrinsically disordered Tarp protein from chlamydia binds actin with a partially preformed helix. Scientific Reports, 2018, 8, 1960.	1.6	18
164	Effects of pH on comformational properties related to the toxicity of Bacillus thuringiensis δ-endotoxin. BBA - Proteins and Proteomics, 1992, 1159, 185-192.	2.1	17
165	Binding of alkaline cations to the double-helical form of gramicidin. Biophysical Journal, 1996, 71, 163-170.	0.2	17
166	The peptaibol antiamoebin as a model ion channel: similarities to bacterial potassium channels. Journal of Peptide Science, 2003, 9, 769-775.	0.8	17
167	Interpreting the functional role of a novel interaction motif in prokaryotic sodium channels. Journal of General Physiology, 2017, 149, 613-622.	0.9	17
168	A molecular model for human Big-Endothelin-1 (Big ET-1). FEBS Letters, 1996, 394, 191-195.	1.3	16
169	A reference dataset for circular dichroism spectroscopy tailored for the βγ-crystallin lens proteins. Experimental Eye Research, 2007, 84, 1001-1008.	1.2	16
170	Correlation of structural and functional thermal stability of the integral membrane protein Na,K-ATPase. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2573-2580.	1.4	16
171	Crystalline Ion Complexes of Gramicidin A. Annals of the New York Academy of Sciences, 1984, 435, 551-554.	1.8	15
172	Hydrophobic oligopeptides in solution and in phospholipid vesicles: synthetic fragments of bacteriorhodopsin. Biochemistry, 1982, 21, 3444-3452.	1.2	14
173	Gramicidin—lipid interactions induce specific tryptophan side-chain conformations. Biochemical Society Transactions, 1992, 20, 864-867.	1.6	14
174	The Crystal Structure of Human Endothelin-1 and How It Relates to Receptor Binding. Journal of Cardiovascular Pharmacology, 1995, 26, S250-253.	0.8	14
175	The effects of calcium ions on double helical forms of gramicidin. European Biophysics Journal, 1997, 26, 299-306.	1.2	14
176	G219S mutagenesis as a means of stabilizing conformational flexibility in the bacterial sodium channel NaChBac. Molecular Membrane Biology, 2008, 25, 670-676.	2.0	14
177	The PCDDB (Protein Circular Dichroism Data Bank): A Bioinformatics Resource for Protein Characterisations and Methods Development. Journal of Molecular Biology, 2022, 434, 167441.	2.0	14
178	A theoretical analysis of the effects of sonication on differential absorption flattening in suspensions of membrane sheets. Biophysical Journal, 1987, 51, 527-532.	0.2	13
179	The Temperature Dependence of Gramicidin Conformational States in Octanol. Protein and Peptide Letters, 2003, 10, 9-17.	0.4	13
180	ValiDichro: a website for validating and quality control of protein circular dichroism spectra. Nucleic Acids Research, 2013, 41, W417-W421.	6.5	13

#	Article	IF	CITATIONS
181	Interaction of an esophageal MEG protein from schistosomes with a human S100 protein involved in inflammatory response. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3490-3497.	1.1	13
182	Role of the Interaction Motif in Maintaining the Open Gate of an Open Sodium Channel. Biophysical Journal, 2018, 115, 1920-1930.	0.2	13
183	Effect of lipid on the conformation of the N-terminal region of equinatoxin II: a synchrotron radiation circular dichroism spectroscopic study. European Biophysics Journal, 2009, 39, 121-127.	1.2	12
184	DichroMatch: a website for similarity searching of circular dichroism spectra. Nucleic Acids Research, 2012, 40, W547-W552.	6.5	12
185	Transmembrane and extramembrane contributions to membrane protein thermal stability: Studies with the NaChBac sodium channel. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 889-895.	1.4	12
186	Mutagenesis of the NaChBac sodium channel discloses a functional role for a conserved S6 asparagine. European Biophysics Journal, 2017, 46, 665-674.	1.2	12
187	Thermal melt circular dichroism spectroscopic studies for identifying stabilising amphipathic molecules for the voltageâ€gated sodium channel NavMs. Biopolymers, 2018, 109, e23067.	1.2	12
188	The Roles of Tryptophan Residues in the Structure, Function, and Folding of the Gramicidin Transmembrane Ion Channel. Advances in Experimental Medicine and Biology, 1996, 398, 607-614.	0.8	12
189	An intrinsically disordered proteins community for ELIXIR. F1000Research, 2019, 8, 1753.	0.8	12
190	The Effects of Environment on the Conformation of the Alamethicin Membrane Channel. Annals of the New York Academy of Sciences, 1984, 435, 527-529.	1.8	11
191	Caesium-binding sites in the gramicidin pore. Biochemical Society Transactions, 1994, 22, 1043-1045.	1.6	11
192	Comparison of the structures of the endothelin A receptor antagonists BQ123 and N -methyl leucine BQ123 with the crystal structure of the C-terminal tail of endothelin-1. FEBS Letters, 1995, 374, 379-383.	1.3	11
193	[60] Comparison of bacteriorhodopsin and rhodopsin molecular structure. Methods in Enzymology, 1982, 88, 447-462.	0.4	10
194	The secondary structure of human amyloid deposits as determined by circular dichroism spectroscopy. Biochemical and Biophysical Research Communications, 1989, 162, 1162-1166.	1.0	10
195	Protein circular dichroism data bank (PCDDB): Data bank and website design. Chirality, 2006, 18, 426-429.	1.3	10
196	Stabilisation of Na,K-ATPase structure by the cardiotonic steroid ouabain. Biochemical and Biophysical Research Communications, 2013, 435, 300-305.	1.0	10
197	Chaperone-mediated native folding of a β-scorpion toxin in the periplasm of Escherichia coli. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 10-15.	1.1	10
198	DichroMatch at the protein circular dichroism data bank (DM@PCDDB): A webâ€based tool for identifying protein nearest neighbors using circular dichroism spectroscopy. Protein Science, 2018, 27, 10-13.	3.1	10

#	Article	IF	CITATIONS
199	Characterization of esterase activity from an Acetomicrobium hydrogeniformans enzyme with high structural stability in extreme conditions. Extremophiles, 2018, 22, 781-793.	0.9	10
200	In vitro membrane-inserted conformation of the cytochrome b5 tail. Biochemical Journal, 2000, 352, 117.	1.7	10
201	Membrane Interactions of S100A12 (Calgranulin C). PLoS ONE, 2013, 8, e82555.	1.1	10
202	Synchrotron radiation circular dichroism spectroscopy: vacuum ultraviolet irradiation does not damage protein integrity. Journal of Synchrotron Radiation, 2001, 8, 1027-1029.	1.0	9
203	Isolated pores dissected from human two-pore channel 2 are functional. Scientific Reports, 2016, 6, 38426.	1.6	9
204	Comparisons of voltage-gated sodium channel structures with open and closed gates and implications for state-dependent drug design. Biochemical Society Transactions, 2018, 46, 1567-1575.	1.6	9
205	Unveiling the binding and orientation of the antimicrobial peptide Plantaricin 149 in zwitterionic and negatively charged membranes. European Biophysics Journal, 2019, 48, 621-633.	1.2	9
206	Red- and Blue-Shifting in the Circular Dichroism Spectra of Polypeptides due to Dipole Effects. Protein and Peptide Letters, 1994, 1, 136-140.	0.4	9
207	The C-terminus of bacteriorhodopsin is a random coil. Biochimica Et Biophysica Acta - Biomembranes, 1984, 777, 93-98.	1.4	8
208	Chapter 3 Gramicidin, a "Simple―lon Channel. Current Topics in Membranes and Transport, 1988, 33, 35-50.	0.6	8
209	Deconstructing the DGAT1 Enzyme: Membrane Interactions at Substrate Binding Sites. PLoS ONE, 2015, 10, e0118407.	1.1	8
210	Environmental Factors Modulating the Stability and Enzymatic Activity of the Petrotoga mobilis Esterase (PmEst). PLoS ONE, 2016, 11, e0158146.	1.1	8
211	Interactions of amphipathic α-helical MEG proteins from Schistosoma mansoni with membranes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183173.	1.4	8
212	Characterization of the Prokaryotic Sodium Channel NavSp Pore with a Microfluidic Bilayer Platform. PLoS ONE, 2015, 10, e0131286.	1.1	8
213	Nicotinic Acetylcholine Receptor: Secondary Structure Determined by Circular Dichroism Spectroscopy. Annals of the New York Academy of Sciences, 1986, 463, 392-395.	1.8	7
214	Structural Basis of Molecular Recognition of the Leishmania Small Hydrophilic Endoplasmic Reticulum-associated Protein (SHERP) at Membrane Surfaces. Journal of Biological Chemistry, 2011, 286, 9246-9256.	1.6	7
215	X-ray, spectroscopic and normal-mode dynamics of calexcitin: structure–function studies of a neuronal calcium-signalling protein. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 615-631.	2.5	7

216 Circular Dichroism Spectroscopy forÂProtein Characterization. , 2015, , 109-137.

7

#	Article	IF	CITATIONS
217	Attenuation of Phosphorylation-dependent Activation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Disease-causing Mutations at the Transmission Interface. Journal of Biological Chemistry, 2017, 292, 1988-1999.	1.6	7
218	Modelling the structures of the isoforms of human endothelins based on the crystal structure of human endothelin-I. Biochemical Society Transactions, 1994, 22, 1037-1043.	1.6	6
219	Peptaibols. , 2013, , 150-156.		6
220	The molecular-replacement solution of an intermediate-sized helical polypeptide, antiamoebin I. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1539-1545.	2.5	5
221	Circular dichroism studies of human bigâ€endothelinâ€1 (Big ETâ€1). Chemical Biology and Drug Design, 1997, 49, 331-335.	1.2	5
222	The Effects of Lipid Environment, Ion-Binding and Chemical Modifications on the Structure of the Gramicidin Transmembrane Channel. Biophysical Journal, 1982, 37, 197-199.	0.2	4
223	Screening ion-channel ligand interactions with passive pumping in a microfluidic bilayer lipid membrane chip. Biomicrofluidics, 2015, 9, 014103.	1.2	4
224	Reference Protocol to Assess Analytical Performance of Higher Order Structural Analysis Measurements: Results from an Interlaboratory Comparison. Analytical Chemistry, 2021, 93, 9041-9048.	3.2	4
225	JCAMP-DX for circular dichroism spectra and metadata (IUPAC Recommendations 2012). Pure and Applied Chemistry, 2012, 84, 2171-2182.	0.9	4
226	The crystal structure of human endothelin-1 and how it relates to receptor binding. Journal of Cardiovascular Pharmacology, 1995, 26 Suppl 3, S250-3.	0.8	4
227	Transferrin and Apotransferrin: pH-dependent Conformational Changes Associated with Receptor-mediated Uptake. Annals of the New York Academy of Sciences, 1986, 463, 403-407.	1.8	3
228	Preliminary Crystallization and X-ray Analysis of Orthorhombic Human Endothelin. Journal of Molecular Biology, 1993, 234, 1250-1252.	2.0	3
229	Preliminary analysis of the pore dimensions of human annexin V. Biochemical Society Transactions, 1994, 22, 146S-146S.	1.6	3
230	Do the Structures of Big ET-1 and Big ET-3 Adopt a Similar Overall Fold? Consequences for Endothelin Converting Enzyme Specificityâ€. Biochemistry, 1999, 38, 1721-1726.	1.2	3
231	Circular Dichroism Spectral Data and Metadata in the Protein Circular Dichroism Data Bank (PCDDB): A Tutorial Guide to Accession and Deposition. Chirality, 2012, 24, 751-763.	1.3	3
232	Biopharmaceutical applications of protein characterisation by circular dichroism spectroscopy. , 2020, , 123-152.		3
233	Membrane Protein Structure: Lessons from Gramicidin. , 1994, , 314-334.		3
234	Structure of a gramicidin A/cesium complex. Acta Crystallographica Section A: Foundations and Advances, 1984, 40, C49-C49.	0.3	3

#	Article	IF	CITATIONS
235	Peptaibols. , 2006, , 83-88.		2
236	Third International Synchrotron Radiation Circular Dichroism Spectroscopy Meeting. Synchrotron Radiation News, 2015, 28, 58-59.	0.2	2
237	Structure of the C-terminal domain of the prokaryotic sodium channel orthologue NsvBa. European Biophysics Journal, 2016, 45, 807-814.	1.2	2
238	Antiamoebin: A polypeptide ion carrier and channel. , 2002, , 733-735.		2
239	The Gramicidin Pore: Crystal Structure of a Gramicidin/Cesium Chloride Complex. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1988, , 103-113.	0.2	2
240	In vitro membrane-inserted conformation of the cytochrome b(5) tail. Biochemical Journal, 2000, 352 Pt 1, 117-24.	1.7	2
241	Membrane protein folding: motifs and predictions. Progress in Clinical and Biological Research, 1988, 273, 133-8.	0.2	2
242	The dynamic nature of gramicidin. Biomembranes: A Multi-Volume Treatise, 1997, , 327-359.	0.1	1
243	Meeting Reports: International Workshop on the Protein Circular Dichroism Data Bank. Synchrotron Radiation News, 2005, 18, 20-21.	0.2	1
244	SRCD2009. Synchrotron Radiation News, 2009, 22, 2-4.	0.2	1
245	Oriented Synchrotron Radiation Circular Dichroism and Linear Dichroism Spectroscopy of Peptides in Model Membranes. Biophysical Journal, 2009, 96, 337a.	0.2	1
246	Validichro, a Software Tool for Validation of Circular Dichroism (CD) Spectroscopic Data. Biophysical Journal, 2011, 100, 320a.	0.2	1
247	AnglerFish: a webserver for defining the geometry of α-helices in membrane proteins. Bioinformatics, 2016, 33, btw781.	1.8	1
248	Diffraction Studies of Modified Purple Membrane. Proceedings in Life Sciences, 1980, , 57-60.	0.5	1
249	Circular dichroism studies of tryptophan residues in gramicidin. , 1992, , 247-249.		1
250	Structure/Function Relationships in Detergent-Solubilized Na/K-ATPase. Annals of the New York Academy of Sciences, 1986, 463, 375-380.	1.8	0
251	Folding Pathways for the Glycophorin Transmembrane Fragment. Annals of the New York Academy of Sciences, 1986, 463, 384-388.	1.8	0
252	Protein-chromophore interactions in bacteriorhodopsin: the effects of a change in surface potential. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1070, 313-320.	1.4	0

#	Article	IF	CITATIONS
253	Endothelin (ET), its Precursor BigET, and its Receptor, ETA. Expert Opinion on Therapeutic Targets, 1997, 1, 121-123.	1.0	0
254	Expression and Characterization of the Human Endothelin-A-Receptor in Pichia pastoris. Journal of Cardiovascular Pharmacology, 2000, 36, S55-S57.	0.8	0
255	Sodium Ion Coordination in the Selectivity Filter of a Voltage-Gated Sodium Channel. Biophysical Journal, 2015, 108, 490a.	0.2	0
256	Voltage-Gated Sodium Channels: Structure and Function of Complexes with Sodium Channel Blockers. Biophysical Journal, 2015, 108, 10a.	0.2	0
257	Sodium Channel/Ligand Complex Structures as a Guide for Rational Drug Design. Biophysical Journal, 2016, 110, 33a.	0.2	0
258	Protein Design for Decreased Disorder: SHERP as an Exemplar Protein. Biophysical Journal, 2016, 110, 555a.	0.2	0
259	Spectral Properties of "Disordered―and Polyproline II Structures Defined by Circular Dichroism Spectroscopy. Biophysical Journal, 2016, 110, 559a-560a.	0.2	0
260	The Complete Crystal Structure of an Open Activated Sodium Channel. Biophysical Journal, 2017, 112, 18a-19a.	0.2	0
261	Oriented Circular Dichroism Spectroscopy as a Tool for Studying the Gating of Sodium Channels. Biophysical Journal, 2017, 112, 241a.	0.2	0
262	How C-Terminal Domain Stabilize the Gate of Voltage-Gated Sodium Channels. Biophysical Journal, 2017, 112, 106a.	0.2	0
263	Thermal Melt Circular Dichroism Spectroscopy of Membrane Proteins as a Tool for Cryo-EM Preparations. Biophysical Journal, 2018, 114, 634a.	0.2	0
264	Fenestration Mutants of a Voltage-Gated Sodium Channel that Modify Channel Blocker Ingress. Biophysical Journal, 2018, 114, 38a.	0.2	0
265	Endothelin precursor isoforms: Structural basis for rational drug design of ECE inhibitors. , 2002, , 511-512.		0
266	The T1â€ŧetramerization Domain of Kv1.2 Rescues Expression and Preserves Function of a Truncated NaChBac Sodium Channel. FEBS Letters, 2022, , .	1.3	0
267	Structural studies of Na,K-ATPase subunits. Progress in Clinical and Biological Research, 1988, 268A, 121-8.	0.2	0