
Stjin Spaepen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/222636/publications.pdf Version: 2024-02-01

STIIN SDAFDEN

#	Article	IF	CITATIONS
1	Maize Field Study Reveals Covaried Microbiota and Metabolic Changes in Roots over Plant Growth. MBio, 2022, 13, e0258421.	4.1	15
2	Developmental plasticity of <i>Brachypodium distachyon</i> in response to P deficiency: Modulation by inoculation with phosphateâ€solubilizing bacteria. Plant Direct, 2021, 5, e00296.	1.9	3
3	A Novel Signaling Pathway Required for Arabidopsis Endodermal Root Organization Shapes the Rhizosphere Microbiome. Plant and Cell Physiology, 2021, 62, 248-261.	3.1	17
4	Molecular and physiological analysis of indole-3-acetic acid degradation in Bradyrhizobium japonicum E109. Research in Microbiology, 2021, 172, 103814.	2.1	9
5	Gluconacetobacter dulcium sp. nov., a novel Gluconacetobacter species from sugar-rich environments. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	5
6	Rbec: a tool for analysis of amplicon sequencing data from synthetic microbial communities. ISME Communications, 2021, 1, .	4.2	6
7	Biostimulant effects of rhizobacteria on wheat growth and nutrient uptake depend on nitrogen application and plant development. Archives of Agronomy and Soil Science, 2019, 65, 58-73.	2.6	42
8	Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome, 2019, 7, 147.	11.1	70
9	Balancing trade-offs between biotic and abiotic stress responses through leaf age-dependent variation in stress hormone cross-talk. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2364-2373.	7.1	205
10	Biostimulant effects of <i>Bacillus</i> strains on wheat from <i>in vitro</i> towards field conditions are modulated by nitrogen supply. Journal of Plant Nutrition and Soil Science, 2019, 182, 325-334.	1.9	26
11	The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology, 2019, 17, e3000534.	5.6	126
12	Root-Associated Bacterial and Fungal Community Profiles of <i>Arabidopsis thaliana</i> Are Robust Across Contrasting Soil P Levels. Phytobiomes Journal, 2018, 2, 24-34.	2.7	37
13	Partial maintenance of organ-specific epigenetic marks during plant asexual reproduction leads to heritable phenotypic variation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9145-E9152.	7.1	65
14	Regulation of IAA Biosynthesis in Azospirillum brasilense Under Environmental Stress Conditions. Current Microbiology, 2018, 75, 1408-1418.	2.2	42
15	New insights into auxin metabolism in Bradyrhizobium japonicum. Research in Microbiology, 2018, 169, 313-323.	2.1	31
16	New insights into indole-3-acetic acid metabolism in <i>Azospirillum brasilense</i> . Journal of Applied Microbiology, 2018, 125, 1774-1785.	3.1	20
17	The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Archives of Microbiology, 2017, 199, 513-517.	2.2	94
18	Interplay Between Innate Immunity and the Plant Microbiota. Annual Review of Phytopathology, 2017, 55, 565-589.	7.8	410

STJIN SPAEPEN

#	Article	IF	CITATIONS
19	Microbiota and Host Nutrition across Plant and Animal Kingdoms. Cell Host and Microbe, 2015, 17, 603-616.	11.0	628
20	Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv BMC Plant Biology, 2015, 15, 195.	3.6	48
21	Functional overlap of the Arabidopsis leaf and root microbiota. Nature, 2015, 528, 364-369.	27.8	1,062
22	Plant Hormones Produced by Microbes. , 2015, , 247-256.		54
23	Autotransporter-based cell surface display in Gram-negative bacteria. Critical Reviews in Microbiology, 2015, 41, 109-123.	6.1	60
24	Complete Genome Sequence of the Model Rhizosphere Strain Azospirillum brasilense Az39, Successfully Applied in Agriculture. Genome Announcements, 2014, 2, .	0.8	39
25	Tissue specific analysis reveals a differential organization and regulation of both ethylene biosynthesis and E8 during climacteric ripening of tomato. BMC Plant Biology, 2014, 14, 11.	3.6	57
26	Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum. Journal of Plant Growth Regulation, 2014, 33, 440-459.	5.1	248
27	Phenotypical and molecular responses of <i><scp>A</scp>rabidopsis thaliana</i> roots as a result of inoculation with the auxinâ€producing bacterium <i><scp>A</scp>zospirillum brasilense</i> . New Phytologist, 2014, 201, 850-861.	7.3	172
28	Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, 2013, 64, 807-838.	18.7	2,589
29	Structural Determinants for Activity and Specificity of the Bacterial Toxin LlpA. PLoS Pathogens, 2013, 9, e1003199.	4.7	33
30	Characterization of Esterase A, a Pseudomonas stutzeri A15 Autotransporter. Applied and Environmental Microbiology, 2012, 78, 2533-2542.	3.1	11
31	Probing the applicability of autotransporter based surface display with the EstA autotransporter of Pseudomonas stutzeri A15. Microbial Cell Factories, 2012, 11, 158.	4.0	13
32	Transcriptome Analysis of the Rhizosphere Bacterium Azospirillum brasilense Reveals an Extensive Auxin Response. Microbial Ecology, 2011, 61, 723-728.	2.8	81
33	Auxin and Plant-Microbe Interactions. Cold Spring Harbor Perspectives in Biology, 2011, 3, a001438-a001438.	5.5	748
34	Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant and Soil, 2010, 337, 233-242.	3.7	59
35	Applicability of the 16S–23S rDNA internal spacer for PCR detection of the phytostimulatory PGPR inoculant Azospirillum lipoferum CRT1 in field soil. Journal of Applied Microbiology, 2010, 108, 25-38.	3.1	19
36	NONLINEAR OPTICAL PROPERTIES OF mSTRAWBERRY AND mCHERRY FOR SECOND HARMONIC IMAGING. Journal of Nonlinear Optical Physics and Materials, 2010, 19, 1-13.	1.8	10

STJIN SPAEPEN

#	Article	IF	CITATIONS
37	Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Research in Microbiology, 2010, 161, 219-226.	2.1	62
38	Wheat growth promotion through inoculation with an ammonium-excreting mutant of Azospirillum brasilense. Biology and Fertility of Soils, 2009, 45, 549-553.	4.3	30
39	Indole-3-acetic acid-regulated genes in <i>Rhizobium etli</i> CNPAF512. FEMS Microbiology Letters, 2009, 291, 195-200.	1.8	53
40	Brominated phenols as auxin-like molecules. European Journal of Soil Biology, 2009, 45, 81-87.	3.2	1
41	Identification of the glutamine synthetase adenylyltransferase of Azospirillum brasilense. Research in Microbiology, 2009, 160, 205-212.	2.1	2
42	Chapter 7 Plant Growth-Promoting Actions of Rhizobacteria. Advances in Botanical Research, 2009, , 283-320.	1.1	125
43	Second-order nonlinear optical properties of fluorescent proteins for second-harmonic imaging. Journal of Materials Chemistry, 2009, 19, 7514.	6.7	42
44	Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant and Soil, 2008, 312, 15-23.	3.7	185
45	An extra-cytoplasmic function sigma factor and anti-sigma factor control carotenoid biosynthesis in Azospirillum brasilense. Microbiology (United Kingdom), 2008, 154, 2096-2105.	1.8	23
46	Molecular Mechanism of Allosteric Substrate Activation in a Thiamine Diphosphate-dependent Decarboxylase. Journal of Biological Chemistry, 2007, 282, 35269-35278.	3.4	32
47	Characterization of Phenylpyruvate Decarboxylase, Involved in Auxin Production of <i>Azospirillum brasilense</i> . Journal of Bacteriology, 2007, 189, 7626-7633.	2.2	110
48	Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 2007, 31, 425-448.	8.6	1,412
49	The crystal structure of phenylpyruvate decarboxylase from Azospirillum brasilense at 1.5 Ã resolution. FEBS Journal, 2007, 274, 2363-2375.	4.7	35
50	Auxin Signaling in Plant Defense. Science, 2006, 313, 171a-171a.	12.6	26