Ruqaiyyah Siddiqui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2225294/publications.pdf

Version: 2024-02-01

244 papers

4,544 citations

32 h-index 168389

g-index

245 all docs

245 docs citations

times ranked

245

3331 citing authors

#	Article	IF	CITATIONS
1	Brain-eating amoebae: is killing the parasite our only option to prevent death?. Expert Review of Anti-Infective Therapy, 2022, 20, 1-2.	4.4	9
2	Opportunistic free-living amoebal pathogens. Pathogens and Global Health, 2022, 116, 70-84.	2.3	14
3	Antibacterial effects of octadecyl trimethylammonium micelle–clay complex against bacterial eye pathogens: potential as a contact lens disinfectant. International Ophthalmology, 2022, 42, 939-944.	1.4	1
4	Novel Tetrazoles against Acanthamoeba castellanii Belonging to the T4 Genotype. Chemotherapy, 2022, 67, 183-192.	1.6	2
5	Cerebral mucormycosis: intranasal route to deliver amphotericin B for effective management?. Current Medical Research and Opinion, 2022, 38, 299-301.	1.9	3
6	SARS-CoV-2: Can sunlight exposure reduce the risk of developing severe consequences of COVID-19?. Computational Biology and Chemistry, 2022, 96, 107602.	2.3	1
7	Nanovesicles containing curcumin hold promise in the development of new formulations of anti-Acanthamoebic agents. Molecular and Biochemical Parasitology, 2022, 247, 111430.	1.1	10
8	<i>Acanthamoeba</i> species isolated from marine water in Malaysia exhibit distinct genotypes and variable physiological properties. Journal of Water and Health, 2022, 20, 54-67.	2.6	8
9	Natural Products for Targeting <i>Acanthamoeba</i> spp Anti-Infective Agents, 2022, 20, .	0.4	1
10	Ebola virus disease: Current perception of clinical features, diagnosis, pathogenesis, and therapeutics. Acta Virologica, 2022, 65, 350-364.	0.8	1
11	Anti-Naegleria <i>fowleri</i> and Anti- <i>Balamuthia mandrillaris</i> Activities of Propolis. Natural Products Journal, 2022, 12, .	0.3	1
12	Gut microbiome–immune system interaction in reptiles. Journal of Applied Microbiology, 2022, 132, 2558-2571.	3.1	11
13	Secretory Profile of Selected Gut Bacteria of Cockroaches: A Potential Source of Anti-Infective Agents. Anti-Infective Agents, 2022, 20, .	0.4	1
14	The role of gut microbiome in cancer genesis and cancer prevention. Health Sciences Review, 2022, 2, 100010.	1.5	16
15	SARS-CoV-2: Possible Factors Contributing to Serious Consequences of COVID-19?. Emirates Medical Journal, 2022, 3, 12-16.	0.3	O
16	Enhancing efficacy of existing antibacterials against selected multiple drug resistant bacteria using cinnamic acid-coated magnetic iron oxide and mesoporous silica nanoparticles. Pathogens and Global Health, 2022, 116, 438-454.	2.3	7
17	Novel Plant-Based Metabolites as Disinfectants against Acanthamoeba castellanii. Antibiotics, 2022, 11, 248.	3.7	7
18	Hind-limb unloading in rodents: Current evidence and perspectives. Acta Astronautica, 2022, 195, 574-582.	3.2	7

#	Article	IF	Citations
19	Primary Amoebic Meningoencephalitis: Potential Application of Ionic Liquids Against Brain-Eating Amoebae?. Acta Parasitologica, 2022, , 1.	1.1	O
20	Polyaniline (PANI)-conjugated tungsten disulphide (WS2) nanoparticles as potential therapeutics against brain-eating amoebae. Applied Microbiology and Biotechnology, 2022, 106, 3279-3291.	3.6	2
21	Antiamoebic Properties of Metabolites against Naegleria fowleri and Balamuthia mandrillaris. Antibiotics, 2022, 11, 539.	3.7	3
22	Amine-Based Deep Eutectic Solvents for Alizarin Extraction from Aqueous Media. Processes, 2022, 10, 794.	2.8	3
23	Crocodylus porosus Sera a Potential Source to Identify Novel Epigenetic Targets: In Silico Analysis. Veterinary Sciences, 2022, 9, 210.	1.7	0
24	Antiamoebic Properties of Laboratory and Clinically Used Drugs against NaegleriaÂfowleri and Balamuthia mandrillaris. Antibiotics, 2022, 11, 749.	3.7	3
25	Sea cucumber as a therapeutic aquatic resource for human health. Fisheries and Aquatic Sciences, 2022, 25, 251-263.	0.8	4
26	Hesperidin-, Curcumin-, and Amphotericin B- Based Nano-Formulations as Potential Antibacterials. Antibiotics, 2022, 11, 696.	3.7	8
27	The increasing importance of the gut microbiome in acne vulgaris. Folia Microbiologica, 2022, 67, 825-835.	2.3	6
28	Epigenetic-Mediated Antimicrobial Resistance: Host versus Pathogen Epigenetic Alterations. Antibiotics, 2022, 11, 809.	3.7	6
29	Evaluation of Nanoparticles with 5-Fluorouracil and Chloroquine on Acanthamoeba castellanii activity. Molecular and Biochemical Parasitology, 2022, , 111492.	1.1	3
30	Antiamoebic properties of salicylic acid-based deep eutectic solvents for the development of contact lens disinfecting solutions against Acanthamoeba. Molecular and Biochemical Parasitology, 2022, 250, 111493.	1.1	6
31	Synthesis and Evaluation of Novel DNA Minor Groove Binders as Antiamoebic Agents. Antibiotics, 2022, 11, 935.	3.7	2
32	Photodynamic Therapy for Peri-Implant Diseases. Antibiotics, 2022, 11, 918.	3.7	9
33	Gut microbiome and human health under the space environment. Journal of Applied Microbiology, 2021, 130, 14-24.	3.1	49
34	Gut bacteria of Varanus salvator possess potential antitumour molecules. International Microbiology, 2021, 24, 47-56.	2.4	5
35	The increasing importance of the novel Coronavirus. Hospital Practice (1995), 2021, 49, 1-11.	1.0	8
36	Gut microbiota of animals living in polluted environments are a potential resource of anticancer molecules. Journal of Applied Microbiology, 2021, 131, 1039-1055.	3.1	2

#	Article	IF	CITATIONS
37	Application and Importance of Theranostics in the Diagnosis and Treatment of Cancer. Archives of Medical Research, 2021, 52, 131-142.	3.3	32
38	Antitumour Activities of Selected Pure Compounds Identified from the Serum of Crocodylus porosus, Malayopython reticulatus, Varanus salvator and Cuora kamaroma amboinensis. Asian Pacific Journal of Cancer Prevention, 2021, 22, 97-106.	1.2	3
39	Transcriptome analysis of Escherichia coli K1 after therapy with hesperidin conjugated with silver nanoparticles. BMC Microbiology, 2021, 21, 51.	3.3	13
40	Brain-Eating Amoebae in the United Arab Emirates?. ACS Pharmacology and Translational Science, 2021, 4, 1014-1015.	4.9	5
41	SARS-CoV-2 invasion of the central nervous: a brief review. Hospital Practice (1995), 2021, 49, 157-163.	1.0	16
42	COVID-19: Does SARS-CoV-2 Modulate Acanthamoeba Epigenetics to Enhance Survival and Transmission in the Environment?. ACS Pharmacology and Translational Science, 2021, 4, 1021-1023.	4.9	6
43	Gut Bacteria of Columbia livia Are a Potential Source of Anti-Tumour Molecules. Asian Pacific Journal of Cancer Prevention, 2021, 22, 733-740.	1.2	1
44	COVID-19: Is There a Link between Alcohol Abuse and SARS-CoV-2-Induced Severe Neurological Manifestations?. ACS Pharmacology and Translational Science, 2021, 4, 1024-1025.	4.9	11
45	Development of anti-acanthamoebic approaches. International Microbiology, 2021, 24, 363-371.	2.4	3
46	Potential Application of Vaporized Drugs via Nasal Inhalers to Prevent Mortality and Central Nervous System Damage Caused by Primary Amoebic Meningoencephalitis Due to <i>Naegleria fowleri</i> Pharmacology and Translational Science, 2021, 4, 1249-1252.	4.9	2
47	Dual Targeting of Function–Structure for Effective Killing of Pathogenic Free-Living Amoebae. ACS Medicinal Chemistry Letters, 2021, 12, 672-676.	2.8	0
48	In vitro effects of multi-purpose contact lens disinfecting solutions towards survivability of Acanthamoeba genotype T4 in Malaysia. Saudi Journal of Biological Sciences, 2021, 28, 2352-2359.	3.8	4
49	Locust as an in Vivo Model. ACS Chemical Neuroscience, 2021, 12, 1469-1471.	3.5	1
50	Gut Bacteria of <i>Rattus rattus</i> (Rat) Produce Broad-Spectrum Antibacterial Lipopeptides. ACS Omega, 2021, 6, 12261-12273.	3.5	14
51	Contemporary approaches to treat <i>Naegleria fowleri</i> : a patent overview. Pharmaceutical Patent Analyst, 2021, 10, 99-101.	1.1	4
52	War of the microbial world: Acanthamoeba spp. interactions with microorganisms. Folia Microbiologica, 2021, 66, 689-699.	2.3	18
53	Cationic Surfactant–Natural Clay Complex as a Novel Agent Against Acanthamoeba castellanii Belonging to the T4 Genotype. Eye and Contact Lens, 2021, 47, 592-597.	1.6	10
54	The increasing importance of <i>Vermamoebavermiformis</i> . Journal of Eukaryotic Microbiology, 2021, 68, e12857.	1.7	19

#	Article	IF	CITATIONS
55	Crocodile Gut Microbiome Is a Potential Source of Novel Bioactive Molecules. ACS Pharmacology and Translational Science, 2021, 4, 1260-1261.	4.9	4
56	Zinc oxide nanoparticles conjugated with clinically-approved medicines as potential antibacterial molecules. AMB Express, 2021, 11, 104.	3.0	45
57	Conjugation with Silver Nanoparticles Enhances Anti-Acanthamoebic Activity of Kappaphycus alvarezii. Journal of Parasitology, 2021, 107, 537-546.	0.7	4
58	Moxifloxacin and Sulfamethoxazole-Based Nanocarriers Exhibit Potent Antibacterial Activities. Antibiotics, 2021, 10, 964.	3.7	13
59	Nanovehicles in the improved treatment of infections due to brain-eating amoebae. International Microbiology, 2021, , 1.	2.4	4
60	Crocodylus porosus Gut Bacteria: A Possible Source of Novel Metabolites. Molecules, 2021, 26, 4999.	3.8	11
61	Polyaniline-Conjugated Boron Nitride Nanoparticles Exhibiting Potent Effects against Pathogenic Brain-Eating Amoebae. ACS Chemical Neuroscience, 2021, 12, 3579-3587.	3.5	6
62	Effect of Microgravity Environment on Gut Microbiome and Angiogenesis. Life, 2021, 11, 1008.	2.4	15
63	Application of protic ammonium-based ionic liquids with carboxylate anions for phenol extraction from aqueous solution and their cytotoxicity on human cells. Journal of Molecular Liquids, 2021, 342, 117447.	4.9	8
64	<i>Acanthamoeba</i> Keratitis: Developing a Novel Contact Lens Disinfectant Remains an Unmet Need. Re:GEN Open, 2021, 1, 92-94.	0.2	0
65	Synthesis of Chalcones as Potential α â€Glucosidase Inhibitors, Inâ€Vitro and Inâ€Silico Studies. ChemistrySelect, 2021, 6, 9933-9940.	1.5	1
66	Current medicines hold promise in the treatment of orphan infections due to brain-eating amoebae. Expert Opinion on Orphan Drugs, 2021, 9, 227-235.	0.8	2
67	Longevity, cellular senescence and the gut microbiome: lessons to be learned from crocodiles. Heliyon, 2021, 7, e08594.	3.2	10
68	Leptospirosis: Increasing importance in developing countries. Acta Tropica, 2020, 201, 105183.	2.0	68
69	Oleic Acid Coated Silver Nanoparticles Showed Better <i>in Vitro</i> Amoebicidal Effects against <i>Naegleria fowleri</i> than Amphotericin B. ACS Chemical Neuroscience, 2020, 11, 2431-2437.	3.5	13
70	hBN Nanoparticle-Assisted Rapid Thermal Cycling for the Detection of Acanthamoeba. Pathogens, 2020, 9, 824.	2.8	6
71	Synthetic nanoparticle-conjugated bisindoles and hydrazinyl arylthiazole as novel antiamoebic agents against brain-eating amoebae. Experimental Parasitology, 2020, 218, 107979.	1.2	6
72	SARS-CoV-2: Disinfection Strategies to Prevent Transmission of Neuropathogens via Air Conditioning Systems. ACS Chemical Neuroscience, 2020, 11, 3177-3179.	3.5	4

#	Article	IF	Citations
73	Can the Environmental Phagocyte <i>Acanthamoeba</i> Be a Useful Model to Study SARS-CoV-2 Pathogenicity, Infectivity, and Evasion of Cellular Immune Defenses?. ACS Chemical Neuroscience, 2020, 11, 2149-2151.	3.5	2
74	Homo sapiens versus SARS-CoV-2. ACS Chemical Neuroscience, 2020, 11, 2391-2392.	3.5	0
75	SARS-CoV-2: The Increasing Importance of Water Filtration against Highly Pathogenic Microbes. ACS Chemical Neuroscience, 2020, 11, 2482-2484.	3.5	6
76	Current treatment options of Balamuthia mandrillaris: a patent overview. Pharmaceutical Patent Analyst, 2020, 9, 121-123.	1.1	8
77	Irrigation System and COVID-19 Recurrence: A Potential Risk Factor in the Transmission of SARS-CoV-2. ACS Chemical Neuroscience, 2020, 11, 2903-2905.	3.5	9
78	An Innovative <i>in Vivo</i> Model for Bioassay-Guided Testing of Potential Antimicrobials. ACS Pharmacology and Translational Science, 2020, 3, 788-789.	4.9	0
79	Mycobacterium leprae: Pathogenesis, diagnosis, and treatment options. Microbial Pathogenesis, 2020, 149, 104475.	2.9	21
80	Current strategies to treat <i>Acanthamoeba</i> keratitis: a patent overview. Pharmaceutical Patent Analyst, 2020, 9, 135-137.	1.1	7
81	Neuropathogens and Nasal Cleansing: Use of Clay Montmorillonite Coupled with Activated Carbon for Effective Eradication of Pathogenic Microbes from Water Supplies. ACS Chemical Neuroscience, 2020, 11, 2786-2788.	3.5	2
82	Locusts: A Model to Investigate Human Disease and Sickness Behavior. ACS Pharmacology and Translational Science, 2020, 3, 1423-1424.	4.9	2
83	Proposed Intranasal Route for Drug Administration in the Management of Central Nervous System Manifestations of COVID-19. ACS Chemical Neuroscience, 2020, 11, 1523-1524.	3.5	12
84	Antiamoebic activity of synthetic tetrazoles against Acanthamoeba castellanii belonging to T4 genotype and effects of conjugation with silver nanoparticles. Parasitology Research, 2020, 119, 1943-1954.	1.6	9
85	Antiamoebic activity of 3-aryl-6,7-dimethoxyquinazolin-4(3H)-one library against Acanthamoeba castellanii. Parasitology Research, 2020, 119, 2327-2335.	1.6	8
86	Centralized air-conditioning and transmission of novel coronavirus. Pathogens and Global Health, 2020, 114, 228-229.	2.3	11
87	Naegleria fowleri: differential genetic expression following treatment with Hesperidin conjugated with silver nanoparticles using RNA-Seq. Parasitology Research, 2020, 119, 2351-2358.	1.6	4
88	Targeting SARS-CoV-2: Novel Source of Antiviral Compound(s) against COVID-19?. ACS Chemical Neuroscience, 2020, 11, 1863-1864.	3.5	2
89	Isoniazid Conjugated Magnetic Nanoparticles Loaded with Amphotericin B as a Potent Antiamoebic Agent against Acanthamoeba castellanii. Antibiotics, 2020, 9, 276.	3.7	10
90	Drug Discovery against Acanthamoeba Infections: Present Knowledge and Unmet Needs. Pathogens, 2020, 9, 405.	2.8	35

#	Article	IF	CITATIONS
91	Antibacterial Effects of Derivatives of Porphyrin, Naphthalene diimide, Aminophenol and Benzodioxane on Methicillin Resistant Staphylococcus aureus and Neuropathogenic Escherichia coli K1. Anti-Infective Agents, 2020, 18, 275-284.	0.4	O
92	Gut bacteria of animals living in polluted environments exhibit broad-spectrum antibacterial activities. International Microbiology, 2020, 23, 511-526.	2.4	9
93	Heterometrus spinifer: An Untapped Source of Anti-Tumor Molecules. Biology, 2020, 9, 150.	2.8	1
94	Gold-Conjugated Curcumin as a Novel Therapeutic Agent against Brain-Eating Amoebae. ACS Omega, 2020, 5, 12467-12475.	3.5	22
95	Repurposing of Drugs Is a Viable Approach to Develop Therapeutic Strategies against Central Nervous System Related Pathogenic Amoebae. ACS Chemical Neuroscience, 2020, 11, 2378-2384.	3.5	8
96	Aryl Quinazolinone Derivatives as Novel Therapeutic Agents against Brain-Eating Amoebae. ACS Chemical Neuroscience, 2020, 11, 2438-2449.	3.5	15
97	<i>Balamuthia mandrillaris</i> : pathogenesis, diagnosis, and treatment. Expert Opinion on Orphan Drugs, 2020, 8, 111-119.	0.8	8
98	War on Terror Cells: Strategies to Eradicate "Novel Coronavirus―Effectively. ACS Chemical Neuroscience, 2020, 11, 1198-1199.	3.5	6
99	Antibacterial Activities of Selected Pure Compounds Isolated from Gut Bacteria of Animals Living in Polluted Environments. Antibiotics, 2020, 9, 190.	3.7	28
100	Whole Organism Model to Study Molecular Mechanisms of Differentiation and Dedifferentiation. Biology, 2020, 9, 79.	2.8	2
101	Novel Coronavirus: Current Understanding of Clinical Features, Diagnosis, Pathogenesis, and Treatment Options. Pathogens, 2020, 9, 297.	2.8	44
102	Novel Azoles as Antiparasitic Remedies against Brain-Eating Amoebae. Antibiotics, 2020, 9, 188.	3.7	20
103	Metformin-coated silver nanoparticles exhibit anti-acanthamoebic activities against both trophozoite and cyst stages. Experimental Parasitology, 2020, 215, 107915.	1.2	19
104	Crocodylus porosus: a potential source of anticancer moleculesCrocodylus porosus: a potential source of anticancer molecules. BMJ Open Science, 2020, 44, e100040.	1.7	8
105	Metronidazole conjugated magnetic nanoparticles loaded with amphotericin B exhibited potent effects against pathogenic Acanthamoeba castellanii belonging to the T4 genotype. AMB Express, 2020, 10, 127.	3.0	15
106	Antiamoebic activity of plant-based natural products and their conjugated silver nanoparticles against Acanthamoeba castellanii (ATCC 50492). AMB Express, 2020, 10, 24.	3.0	34
107	Synthetic Dihydropyridines as Novel Antiacanthamoebic Agents. Medicinal Chemistry, 2020, 16, 841-847.	1.5	2
108	Sera/Organ Lysates of Selected Animals Living in Polluted Environments Exhibit Cytotoxicity against Cancer Cell Lines. Anti-Cancer Agents in Medicinal Chemistry, 2020, 19, 2251-2268.	1.7	11

#	Article	IF	Citations
109	Morphological and molecular characterization of Acanthamoeba isolated from contact lens paraphernalia in Malaysia: Highlighting the pathogenic potential of T4 genotype. Asian Pacific Journal of Tropical Medicine, 2020, 13, 542.	0.8	5
110	Identification of Antibacterial Molecule(s) from Animals Living in Polluted Environments. Current Pharmaceutical Biotechnology, 2020, 21, 425-437.	1.6	1
111	Anticancer Properties of Asian Water Monitor Lizard (Varanus salvator), Python (Malayopython) Tj ETQq1 1 0.78 2020, 20, 1558-1570.	4314 rgB1 1.7	「/Overlock 1 2
112	Scorpion and Frog Organ Lysates are Potential Source of Antitumour Activity. Asian Pacific Journal of Cancer Prevention, 2020, 21, 3011-3018.	1.2	1
113	Scorpion and Frog Organ Lysates are Potential Source of Antitumour Activity. Asian Pacific Journal of Cancer Prevention, 2020, 21, 3011-3018.	1.2	1
114	Crocodiles and Alligators: Physicians' Answer to Cancer?. Current Oncology, 2019, 26, 186-186.	2.2	10
115	Novel antiacanthamoebic compounds belonging to quinazolinones. European Journal of Medicinal Chemistry, 2019, 182, 111575.	5.5	19
116	Antibacterial Effects of Quinazolin-4(3H)-One Functionalized-Conjugated Silver Nanoparticles. Antibiotics, 2019, 8, 179.	3.7	12
117	Repositioning of Guanabenz in Conjugation with Gold and Silver Nanoparticles against Pathogenic Amoebae <i>Acanthamoeba castellanii</i> and <i>Naegleria fowleri</i> . ACS Infectious Diseases, 2019, 5, 2039-2046.	3.8	35
118	Biologically active metabolite(s) from haemolymph of red-headed centipede Scolopendra subspinipes possess broad spectrum antibacterial activity. AMB Express, 2019, 9, 95.	3.0	15
119	Galactose as novel target against Acanthamoeba cysts. PLoS Neglected Tropical Diseases, 2019, 13, e0007385.	3.0	8
120	Occurrence and molecular characterisation of Acanthamoeba isolated from recreational hot springs in Malaysia: evidence of pathogenic potential. Journal of Water and Health, 2019, 17, 813-825.	2.6	16
121	Gut Bacteria of Water Monitor Lizard (Varanus salvator) Are a Potential Source of Antibacterial Compound(s). Antibiotics, 2019, 8, 164.	3.7	19
122	<i>Naegleria fowleri</i> : diagnosis, treatment options and pathogenesis. Expert Opinion on Orphan Drugs, 2019, 7, 67-80.	0.8	16
123	Cobalt nanoparticles as novel nanotherapeutics against Acanthamoeba castellanii. Parasites and Vectors, 2019, 12, 280.	2.5	41
124	Oleic acid–conjugated silver nanoparticles as efficient antiamoebic agent against Acanthamoeba castellanii. Parasitology Research, 2019, 118, 2295-2304.	1.6	23
125	Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Scientific Reports, 2019, 9, 3122.	3.3	96
126	<i>trans</i> -Cinnamic Acid Conjugated Gold Nanoparticles as Potent Therapeutics against Brain-Eating Amoeba <i>Naegleria fowleri</i> - ACS Chemical Neuroscience, 2019, 10, 2692-2696.	3.5	28

#	Article	IF	Citations
127	Gut bacteria of animals/pests living in polluted environments are a potential source of antibacterials. Applied Microbiology and Biotechnology, 2019, 103, 3955-3964.	3.6	21
128	Novel insights into the potential role of ion transport in sensory perception in Acanthamoeba. Parasites and Vectors, 2019, 12, 538.	2.5	10
129	Gut bacteria of Cuora amboinensis (turtle) produce broad-spectrum antibacterial molecules. Scientific Reports, 2019, 9, 17012.	3.3	30
130	Effects of Shape and Size of Cobalt Phosphate Nanoparticles against Acanthamoeba castellanii. Pathogens, 2019, 8, 260.	2.8	17
131	The Use of Nanomedicine for Targeted Therapy against Bacterial Infections. Antibiotics, 2019, 8, 260.	3.7	38
132	Importance of Theranostics in Rare Brain-Eating Amoebae Infections. ACS Chemical Neuroscience, 2019, 10, 6-12.	3.5	12
133	Occurrence of free-living amoebae (Acanthamoeba, Balamuthia, Naegleria) in water samples in Peninsular Malaysia. Journal of Water and Health, 2019, 17, 160-171.	2.6	16
134	Clinically Approved Drugs against CNS Diseases as Potential Therapeutic Agents To Target Brain-Eating Amoebae. ACS Chemical Neuroscience, 2019, 10, 658-666.	3.5	32
135	Acanthamoeba Keratitis: Current Status and Urgent Research Priorities. Current Medicinal Chemistry, 2019, 26, 5711-5726.	2.4	14
136	Brain-eating Amoebae Infection: Challenges and Opportunities in Chemotherapy. Mini-Reviews in Medicinal Chemistry, 2019, 19, 980-987.	2.4	19
137	Invertebrates living in polluted environments are potential source of novel anticancer agents. Sanat Tasarim Dergisi, 2019, 23, 1079-1089.	0.4	6
138	Gold Nanoparticles Conjugation Enhances Antiacanthamoebic Properties of Nystatin, Fluconazole and Amphotericin B. Journal of Microbiology and Biotechnology, 2019, 29, 171-177.	2.1	30
139	Antidiabetic Drugs and Their Nanoconjugates Repurposed as Novel Antimicrobial Agents against Acanthamoeba castellanii. Journal of Microbiology and Biotechnology, 2019, 29, 713-720.	2.1	16
140	Silver Nanoparticle Conjugation with Thiopyridine Exhibited Potent Antibacterial Activity Against Escherichia coli and Further Enhanced by Copper Capping. Jundishapur Journal of Microbiology, 2019, In Press, .	0.5	3
141	Gut bacteria of cockroaches are a potential source of antibacterial compound(s). Letters in Applied Microbiology, 2018, 66, 416-426.	2.2	44
142	Development of nanoparticle-assisted PCR assay in the rapid detection of brain-eating amoebae. Parasitology Research, 2018, 117, 1801-1811.	1.6	20
143	Silver nanoparticle conjugation affects antiacanthamoebic activities of amphotericin B, nystatin, and fluconazole. Parasitology Research, 2018, 117, 265-271.	1.6	54
144	Silver Nanoparticle Conjugation-Enhanced Antibacterial Efficacy of Clinically Approved Drugs Cephradine and Vildagliptin. Antibiotics, 2018, 7, 100.	3.7	47

#	Article	IF	Citations
145	Gold Nanoparticle-Conjugated Cinnamic Acid Exhibits Antiacanthamoebic and Antibacterial Properties. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	47
146	Cytotoxic effects of Benzodioxane, Naphthalene diimide, Porphyrin and Acetamol derivatives on HeLa cells. SAGE Open Medicine, 2018, 6, 205031211878196.	1.8	29
147	Antimicrobial discovery from natural and unusual sources. Journal of Pharmacy and Pharmacology, 2018, 70, 1287-1300.	2.4	20
148	Synthesis of 4-(dimethylamino)pyridine propylthioacetate coated gold nanoparticles and their antibacterial and photophysical activity. Journal of Nanobiotechnology, 2018, 16, 6.	9.1	24
149	Combating Acanthamoeba spp. cysts: what are the options?. Parasites and Vectors, 2018, 11, 26.	2.5	51
150	Cockroaches, locusts, and envenomating arthropods: a promising source of antimicrobials. Iranian Journal of Basic Medical Sciences, 2018, 21, 873-877.	1.0	6
151	Targeting Brain-Eating Amoebae Infections. ACS Chemical Neuroscience, 2017, 8, 687-688.	3.5	4
152	Brain-Eating Amoebae: Predilection Sites in the Brain and Disease Outcome. Journal of Clinical Microbiology, 2017, 55, 1989-1997.	3.9	76
153	Pathogenesis of microbial keratitis. Microbial Pathogenesis, 2017, 104, 97-109.	2.9	155
154	Acanthamoeba castellanii interactions with Streptococcus pneumoniae and Streptococcus pyogenes. Experimental Parasitology, 2017, 183, 128-132.	1.2	10
155	Strategies to counter transmission of "superbugs―by targeting free-living amoebae. Experimental Parasitology, 2017, 183, 133-136.	1.2	3
156	Crocodiles and alligators: Antiamoebic and antitumor compounds of crocodiles. Experimental Parasitology, 2017, 183, 194-200.	1.2	43
157	Status of the effectiveness of contact lens disinfectants in Malaysia against keratitis-causing pathogens. Experimental Parasitology, 2017, 183, 187-193.	1.2	16
158	Future Priorities in Tackling Infections Due to Brain-Eating Amoebae. ACS Chemical Neuroscience, 2017, 8, 2355-2355.	3.5	9
159	Animals living in polluted environments are a potential source of anti-tumor molecule(s). Cancer Chemotherapy and Pharmacology, 2017, 80, 919-924.	2.3	25
160	Brain-Eating Amoebae: Silver Nanoparticle Conjugation Enhanced Efficacy of Anti-Amoebic Drugs against <i>Naegleria fowleri</i> . ACS Chemical Neuroscience, 2017, 8, 2626-2630.	3.5	85
161	The effects of phosphanegold(I) thiolates on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype. Journal of Negative Results in BioMedicine, 2017, 16, 6.	1.4	11

ldentification and characterization of antibacterial compound(s) of cockroaches (Periplaneta) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 62 To 60 ft 50 ft 5

#	Article	IF	Citations
163	Presence of rotavirus and free-living amoebae in the water supplies of Karachi, Pakistan. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2017, 59, e32.	1.1	12
164	The effect of peptidic and non-peptidic proteasome inhibitors on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype. Experimental Parasitology, 2016, 168, 16-24.	1.2	13
165	Do crocodiles and alligators hold the key to cancer treatment?. BMJ, The, 2016, , i3763.	6.0	4
166	The use of dimethyl sulfoxide in contact lens disinfectants is a potential preventative strategy against contracting Acanthamoeba keratitis. Contact Lens and Anterior Eye, 2016, 39, 389-393.	1.7	8
167	Isolation of Balamuthia mandrillaris-specific antibody fragments from a bacteriophage antibody display library. Experimental Parasitology, 2016, 166, 94-96.	1.2	3
168	The Development of Drugs against Acanthamoeba Infections. Antimicrobial Agents and Chemotherapy, 2016, 60, 6441-6450.	3.2	79
169	Antiacanthamoebic properties of natural and marketed honey in Pakistan. Asian Pacific Journal of Tropical Biomedicine, 2016, 6, 967-972.	1.2	9
170	Effect of non-steroidal anti-inflammatory drugs on biological properties of Acanthamoeba castellanii belonging to the T4 genotype. Experimental Parasitology, 2016, 168, 45-50.	1.2	6
171	Biology and pathogenesis of Naegleria fowleri. Acta Tropica, 2016, 164, 375-394.	2.0	127
172	The role of genomic islands in Escherichia coli K1 interactions with intestinal and kidney epithelial cells. Microbial Pathogenesis, 2016, 93, 145-151.	2.9	4
173	Targeting cyst wall is an effective strategy in improving the efficacy of marketed contact lens disinfecting solutions against Acanthamoeba castellanii cysts. Contact Lens and Anterior Eye, 2016, 39, 239-243.	1.7	30
174	Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine. Antimicrobial Agents and Chemotherapy, 2016, 60, 1283-1288.	3.2	40
175	Stress Management in Cyst-Forming Free-Living Protists: Programmed Cell Death and/or Encystment. BioMed Research International, 2015, 2015, 1-6.	1.9	9
176	The immortal amoeba: a useful model to study cellular differentiation processes?. Pathogens and Global Health, 2015, 109, 305-306.	2.3	2
177	Is there evidence of sexual reproduction (meiosis) inAcanthamoeba?. Pathogens and Global Health, 2015, 109, 193-195.	2.3	6
178	Status of the effectiveness of contact lens solutions against keratitis-causing pathogens. Contact Lens and Anterior Eye, 2015, 38, 34-38.	1.7	27
179	Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasites and Vectors, 2015, 8, 23.	2.5	60
180	Balamuthia mandrillaris: Morphology, biology, and virulence. Tropical Parasitology, 2015, 5, 15.	0.4	27

#	Article	IF	CITATIONS
181	Partial characterization of Acanthamoeba castellanii (T4 genotype) DNase activity. Parasitology Research, 2015, 114, 457-463.	1.6	2
182	Interactions of Pseudomonas aeruginosa and Corynebacterium spp. with non-phagocytic brain microvascular endothelial cells and phagocytic Acanthamoeba castellanii. Parasitology Research, 2015, 114, 2349-2356.	1.6	10
183	Photochemotherapeutic Strategy against Acanthamoeba Infections. Antimicrobial Agents and Chemotherapy, 2015, 59, 3031-3041.	3.2	21
184	The role of G protein coupled receptor-mediated signaling in the biological properties of Acanthamoeba castellanii of the T4 genotype. Microbial Pathogenesis, 2015, 81, 22-27.	2.9	11
185	Anaerobic respiration: InÂvitro efficacy of Nitazoxanide against mitochondriate Acanthamoeba castellanii of the T4 genotype. Experimental Parasitology, 2015, 157, 170-176.	1.2	7
186	Atomic Force Microscopic Imaging of <i>Acanthamoeba castellanii</i> and <i>Balamuthia mandrillaris</i> Trophozoites and Cysts. Journal of Eukaryotic Microbiology, 2015, 62, 85-94.	1.7	3
187	Black cobra (<i>Naja naja karachiensis</i>) lysates exhibit broad-spectrum antimicrobial activities. Pathogens and Global Health, 2014, 108, 129-136.	2.3	14
188	Culturable Aerobic and Facultative Anaerobic Intestinal Bacterial Flora of Black Cobra (Naja naja) Tj ETQq0 0 0 rg	gBT/Overlo	ock ₁ 10 Tf 50 4
189	War on terror cells: killing the host that harbours â€~superbugs' is an infection control strategy in our fight against infectious diseases. Pathogens and Global Health, 2014, 108, 4-10.	2.3	10
190	Failure of chemotherapy in the first reported cases of <i>Acanthamoeba </i> keratitis in Pakistan. Pathogens and Global Health, 2014, 108, 49-52.	2.3	6
191	Primary Amoebic Meningoencephalitis Caused by Naegleria fowleri: An Old Enemy Presenting New Challenges. PLoS Neglected Tropical Diseases, 2014, 8, e3017.	3.0	95
192	Interactions of Neuropathogenic (i> Escherichia coli (i> K1 (RS218) and Its Derivatives Lacking Genomic Islands with Phagocytic (i> Acanthamoeba castellanii (i> and Nonphagocytic Brain Endothelial Cells. BioMed Research International, 2014, 2014, 1-8.	1.9	7
193	Inefficacy of marketed contact lens disinfection solutions against keratitis-causing Acanthamoeba castellanii belonging to the T4 genotype. Experimental Parasitology, 2014, 141, 122-128.	1.2	36
194	Combined drug therapy in the management of granulomatous amoebic encephalitis due to Acanthamoeba spp., and Balamuthia mandrillaris. Experimental Parasitology, 2014, 145, S115-S120.	1.2	28
195	Acanthamoeba and bacteria produce antimicrobials to target their counterpart. Parasites and Vectors, 2014, 7, 56.	2.5	22
196	The effect of environmental and physiological conditions on excystation of Acanthamoeba castellanii belonging to the T4 genotype. Parasitology Research, 2014, 113, 2809-2816.	1.6	11
197	Laboratory testing of clinically approved drugs against Balamuthia mandrillaris. World Journal of Microbiology and Biotechnology, 2014, 30, 2337-2342.	3.6	11
198	In vitro inhibition of protease-activated receptors 1, 2 and 4 demonstrates that these receptors are not involved in an Acanthamoeba castellanii keratitis isolate-mediated disruption of the human brain microvascular endothelial cells. Experimental Parasitology, 2014, 145, S78-S83.	1.2	3

#	Article	IF	Citations
199	Predator <i>vs</i> aliens: bacteria interactions with <i>Acanthamoeba</i> . Parasitology, 2014, 141, 869-874.	1.5	20
200	Amoebiasis: Neurological Involvement and Neurobiology. , 2014, , 93-110.		0
201	Neuropathogenic Escherichia coli K1 does not exhibit proteolytic activities to exert its pathogenicity. Journal of Negative Results in BioMedicine, 2013, 12, 8.	1.4	4
202	Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila. Parasites and Vectors, 2013, 6, 169.	2.5	40
203	Silencing of xylose isomerase and cellulose synthase by siRNA inhibits encystation in Acanthamoeba castellanii. Parasitology Research, 2013, 112, 1221-1227.	1.6	25
204	The effect of different environmental conditions on the encystation of Acanthamoeba castellanii belonging to the T4 genotype. Experimental Parasitology, 2013, 135, 30-35.	1.2	28
205	Research as a Pedagogical Approach in Undergraduate Medical Education: An Experience. Medical Science Educator, 2013, 23, 119-121.	1.5	3
206	Acanthamoeba can propagate on thermophilic Sulfolobus spp Parasitology Research, 2013, 112, 879-881.	1.6	5
207	Prevalence of Acanthamoeba and superbugs in a clinical setting: coincidence or hyperparasitism?. Parasitology Research, 2013, 112, 1349-1351.	1.6	8
208	Infection control strategy by killing drug-resistant bacteria. Pathogens and Global Health, 2013, 107, 215-216.	2.3	5
209	A Simple Assay to Screen Antimicrobial Compounds Potentiating the Activity of Current Antibiotics. BioMed Research International, 2013, 2013, 1-4.	1.9	26
210	Status of free-living amoebae (Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris) in drinking water supplies in Karachi, Pakistan. Journal of Water and Health, 2013, 11, 371-375.	2.6	27
211	Killing the Dead: Chemotherapeutic Strategies Against Freeâ€Living Cystâ€Forming Protists (<i>Acanthamoeba</i> sp. and <i>Balamuthia mandrillaris</i>). Journal of Eukaryotic Microbiology, 2013, 60, 291-297.	1.7	13
212	Is Ritual Cleansing a Missing Link Between Fatal Infection and Brain-Eating Amoebae?. Clinical Infectious Diseases, 2012, 54, 1817-1818.	5.8	13
213	A novel in vivo model to study bacterial pathogenesis and screen potential therapeutic targets. Journal of Medical Microbiology, 2012, 61, 1036-1038.	1.8	2
214	Next generation of non-mammalian blood-brain barrier models to study parasitic infections of the central nervous system. Virulence, 2012, 3, 159-163.	4.4	5
215	<i>Acanthamoeba</i> differentiation: a two-faced drama of <i>Dr Jekyll and Mr Hyde</i> . Parasitology, 2012, 139, 826-834.	1.5	13
216	Animals living in polluted environments are potential source of antimicrobials against infectious agents. Pathogens and Global Health, 2012, 106, 218-223.	2.3	31

#	Article	IF	Citations
217	Anti-Acanthamoebic properties of resveratrol and demethoxycurcumin. Experimental Parasitology, 2012, 132, 519-523.	1.2	35
218	The role of Src kinase in the biology and pathogenesis of Acanthamoeba castellanii. Parasites and Vectors, 2012, 5, 112.	2.5	9
219	Is semen a useful diagnostic tool for rare infections of the central nervous system?. Parasites and Vectors, 2012, 5, 297.	2.5	0
220	Photochemotherapeutic strategies against Acanthamoeba keratitis. AMB Express, 2012, 2, 47.	3.0	11
221	Escherichia coli K1-induced cytopathogenicity of human brain microvascular endothelial cells. Microbial Pathogenesis, 2012, 53, 269-275.	2.9	8
222	Biology and pathogenesis of Acanthamoeba. Parasites and Vectors, 2012, 5, 6.	2.5	416
223	The role of the twin-arginine translocation pathway in Escherichia coli K1 pathogenicity in the African migratory locust, Locusta migratoria. FEMS Immunology and Medical Microbiology, 2012, 64, 162-168.	2.7	3
224	Acanthamoeba is an evolutionary ancestor of macrophages: A myth or reality?. Experimental Parasitology, 2012, 130, 95-97.	1.2	57
225	War of the microbial worlds: Who is the beneficiary in Acanthamoeba–bacterial interactions?. Experimental Parasitology, 2012, 130, 311-313.	1.2	34
226	Antibacterial and Anti-Acanthamoebic Properties of Catha Edulis (Khat). Journal of Bacteriology $\&$ Parasitology, 2012, 03, .	0.2	7
227	Non-vertebrate models to study parasite invasion of the central nervous system. Trends in Parasitology, 2011, 27, 5-10.	3.3	2
228	Rigorous ablution is a potential risk factor to fatal brain infection in developing countries. Journal of Infection, 2011, 63, 487-488.	3.3	2
229	Area 51: How do Acanthamoeba invade the central nervous system?. Trends in Parasitology, 2011, 27, 185-189.	3.3	22
230	The type III secretion system is involved in Escherichia coli K1 interactions with Acanthamoeba. Experimental Parasitology, 2011, 128, 409-413.	1.2	19
231	Is Acanthamoeba pathogenicity associated with intracellular bacteria?. Experimental Parasitology, 2011, 129, 207-210.	1.2	13
232	The use of high-resolution 1H nuclear magnetic resonance (NMR) spectroscopy in the clinical diagnosis of Acanthamoeba. Parasitology Research, 2011, 109, 1661-1669.	1.6	8
233	Balamuthia mandrillaris: Role of galactose in encystment and identification of potential inhibitory targets. Experimental Parasitology, 2010, 126, 22-27.	1.2	15
234	Enemy within: strategies to kill â€~superbugs' in hospitals. International Journal of Antimicrobial Agents, 2010, 36, 291.	2.5	5

#	Article	IF	Citations
235	Effect of free versus liposomal-complexed pentamidine isethionate on biological characteristics of Acanthamoeba castellanii in vitro. Journal of Medical Microbiology, 2009, 58, 327-330.	1.8	15
236	Acanthamoeba affects the integrity of human brain microvascular endothelial cells and degrades the tight junction proteins. International Journal for Parasitology, 2009, 39, 1611-1616.	3.1	73
237	The cyst wall carbohydrate composition of Balamuthia mandrillaris. Parasitology Research, 2009, 104, 1439-1443.	1.6	17
238	<i>Balamuthia mandrillaris</i> : Staining Properties of Cysts and Trophozoites and the Effect of 2,6â€Dichlorobenzonitrile and Calcofluor White on Encystment. Journal of Eukaryotic Microbiology, 2009, 56, 136-141.	1.7	13
239	Balamuthia amoebic encephalitis: An emerging disease with fatal consequences. Microbial Pathogenesis, 2008, 44, 89-97.	2.9	65
240	Increasing Importance of <i>Balamuthia mandrillaris</i> . Clinical Microbiology Reviews, 2008, 21, 435-448.	13.6	121
241	Balamuthia mandrillaris resistance to hostile conditions. Journal of Medical Microbiology, 2008, 57, 428-431.	1.8	24
242	Balamuthia mandrillaris interactions with human brain microvascular endothelial cells in vitro. Journal of Medical Microbiology, 2007, 56, 1110-1115.	1.8	27
243	Effect of Antimicrobial Compounds on Balamuthia mandrillaris Encystment and Human Brain Microvascular Endothelial Cell Cytopathogenicity. Antimicrobial Agents and Chemotherapy, 2007, 51, 4471-4473.	3.2	28
244	COVID-19 and alcohol use disorder: putative differential gene expression patterns that might be associated with neurological complications. Hospital Practice (1995), 0, , 1-7.	1.0	1