
Gloria Caminal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2225290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere, 2009, 74, 765-772.	8.2	303
2	Mechanism of textile metal dye biotransformation by Trametes versicolor. Water Research, 2004, 38, 2166-2172.	11.3	201
3	Degradation of the drug sodium diclofenac by Trametes versicolor pellets and identification of some intermediates by NMR. Journal of Hazardous Materials, 2010, 176, 836-842.	12.4	187
4	Biodegradation of the analgesic naproxen by Trametes versicolor and identification of intermediates using HPLC-DAD-MS and NMR. Bioresource Technology, 2010, 101, 2159-2166.	9.6	166
5	Can white-rot fungi be a real wastewater treatment alternative for organic micropollutants removal? A review. Water Research, 2018, 138, 137-151.	11.3	150
6	Biodegradation of sulfamethazine by Trametes versicolor: Removal from sewage sludge and identification of intermediate products by UPLC–QqTOF-MS. Science of the Total Environment, 2011, 409, 5505-5512.	8.0	127
7	Bioremediation of PAHs-contaminated soil through composting: Influence of bioaugmentation and biostimulation on contaminant biodegradation. International Biodeterioration and Biodegradation, 2011, 65, 859-865.	3.9	119
8	Evaluation of fungal- and photo-degradation as potential treatments for the removal of sunscreens BP3 and BP1. Science of the Total Environment, 2012, 427-428, 355-363.	8.0	105
9	White-rot fungus-mediated degradation of the analgesic ketoprofen and identification of intermediates by HPLC–DAD–MS and NMR. Chemosphere, 2010, 78, 474-481.	8.2	102
10	Pharmaceuticals removal and microbial community assessment in a continuous fungal treatment of non-sterile real hospital wastewater after a coagulation-flocculation pretreatment. Water Research, 2017, 116, 65-75.	11.3	99
11	Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresource Technology, 2010, 101, 2259-2266.	9.6	98
12	Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor. Water Research, 2010, 44, 521-532.	11.3	94
13	Fungal treatment for the removal of antibiotics and antibiotic resistance genes in veterinary hospital wastewater. Chemosphere, 2016, 152, 301-308.	8.2	92
14	Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. Journal of Hazardous Materials, 2012, 213-214, 347-354.	12.4	85
15	Identification of some factors affecting pharmaceutical active compounds (PhACs) removal in real wastewater. Case study of fungal treatment of reverse osmosis concentrate. Journal of Hazardous Materials, 2015, 283, 663-671.	12.4	85
16	Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. Journal of Biotechnology, 2008, 134, 127-136.	3.8	81
17	Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Science of the Total Environment, 2014, 500-501, 235-242.	8.0	72
18	Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: A simplified kinetic model. Biotechnology and Bioengineering, 1986, 28, 288-293.	3.3	70

#	Article	IF	CITATIONS
19	Removal of pharmaceuticals, polybrominated flame retardants and UV-filters from sludge by the fungus Trametes versicolor in bioslurry reactor. Journal of Hazardous Materials, 2012, 233-234, 235-243.	12.4	70
20	Metabolites from the biodegradation of triphenylmethane dyes by Trametes versicolor or laccase. Chemosphere, 2009, 75, 1344-1349.	8.2	69
21	Solid-phase treatment with the fungus Trametes versicolor substantially reduces pharmaceutical concentrations and toxicity from sewage sludge. Bioresource Technology, 2011, 102, 5602-5608.	9.6	69
22	Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biology and Biochemistry, 2010, 42, 2087-2093.	8.8	62
23	Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose. Biotechnology and Bioengineering, 1985, 27, 1282-1290.	3.3	56
24	Study of the effect of the bacterial and fungal communities present in real wastewater effluents on the performance of fungal treatments. Science of the Total Environment, 2017, 579, 366-377.	8.0	56
25	Black liquor detoxification by laccase ofTrametes versicolor pellets. Journal of Chemical Technology and Biotechnology, 2003, 78, 548-554.	3.2	55
26	Degradation of UV filters in sewage sludge and 4-MBC in liquid medium by the ligninolytic fungus Trametes versicolor. Journal of Environmental Management, 2012, 104, 114-120.	7.8	55
27	Different approaches to improving the textile dye degradation capacity of Trametes versicolor. Biochemical Engineering Journal, 2006, 31, 42-47.	3.6	51
28	Mechanistics of trichloroethylene mineralization by the white-rot fungus Trametes versicolor. Chemosphere, 2008, 70, 404-410.	8.2	51
29	Bioaugmentation of Sewage Sludge with <i>Trametes versicolor</i> in Solid-Phase Biopiles Produces Degradation of Pharmaceuticals and Affects Microbial Communities. Environmental Science & Technology, 2012, 46, 12012-12020.	10.0	50
30	Continuous treatment of non-sterile hospital wastewater by Trametes versicolor: How to increase fungal viability by means of operational strategies and pretreatments. Journal of Hazardous Materials, 2016, 318, 561-570.	12.4	49
31	Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor. Journal of Hazardous Materials, 2010, 181, 181-186.	12.4	48
32	Trametes versicolor pellets production: Low-cost medium and scale-up. Biochemical Engineering Journal, 2008, 42, 61-66.	3.6	47
33	The effect of HRT on the decolourisation of the Grey Lanaset G textile dye by Trametes versicolor. Chemical Engineering Journal, 2007, 126, 163-169.	12.7	46
34	Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment. Applied Microbiology and Biotechnology, 2016, 100, 2401-2415.	3.6	46
35	Novel Aerobic Perchloroethylene Degradation by the White-Rot FungusTrametes versicolor. Environmental Science & Technology, 2006, 40, 7796-7802.	10.0	43
36	A comparative life cycle assessment of two treatment technologies for the Grey Lanaset G textile dye: biodegradation by Trametes versicolor and granular activated carbon adsorption. International Journal of Life Cycle Assessment, 2012, 17, 613-624.	4.7	43

#	Article	IF	CITATIONS
37	Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge. Bioresource Technology, 2014, 168, 180-189.	9.6	43
38	Evidencing the role of lactose permease in IPTG uptake by Escherichia coli in fed-batch high cell density cultures. Journal of Biotechnology, 2012, 157, 391-398.	3.8	42
39	Influence of induction and operation mode on recombinant rhamnulose 1-phosphate aldolase production by Escherichia coli using the T5 promoter. Journal of Biotechnology, 2005, 118, 75-87.	3.8	40
40	Using promoter libraries to reduce metabolic burden due to plasmid-encoded proteins in recombinant Escherichia coli. New Biotechnology, 2016, 33, 78-90.	4.4	38
41	Dechlorination of 1,2,3- and 1,2,4-trichlorobenzene by the white-rot fungus Trametes versicolor. Journal of Hazardous Materials, 2009, 166, 1141-1147.	12.4	37
42	Naproxen degradation test to monitor Trametes versicolor activity in solid-state bioremediation processes. Journal of Hazardous Materials, 2010, 179, 1152-1155.	12.4	36
43	Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. Journal of Hazardous Materials, 2013, 262, 554-560.	12.4	34
44	Olive Oil Mill Waste Waters Decoloration and Detoxification in a Bioreactor by the White Rot Fungus Phanerochaete flavido-alba. Biotechnology Progress, 2002, 18, 660-662.	2.6	33
45	Recombinant production of serine hydroxymethyl transferase from Streptococcus thermophilus and its preliminary evaluation as a biocatalyst. Applied Microbiology and Biotechnology, 2005, 68, 489-497.	3.6	32
46	Combining biological processes with UV/H2O2 for metoprolol and metoprolol acid removal in hospital wastewater. Chemical Engineering Journal, 2021, 404, 126482.	12.7	32
47	High-level production of recombinant His-tagged rhamnulose 1-phosphate aldolase inEscherichia coli. Journal of Chemical Technology and Biotechnology, 2003, 78, 1171-1179.	3.2	30
48	Fungal degradation of selected medium to highly polar pesticides by Trametes versicolor: kinetics, biodegradation pathways, and ecotoxicity of treated waters. Analytical and Bioanalytical Chemistry, 2022, 414, 439-449.	3.7	29
49	Prospects on coupling UV/H2O2 with activated sludge or a fungal treatment for the removal of pharmaceutically active compounds in real hospital wastewater. Science of the Total Environment, 2021, 773, 145374.	8.0	29
50	Stable Carbon Isotope Fractionation During 1,2-Dichloropropane-to-Propene Transformation by an Enrichment Culture Containing <i>Dehalogenimonas</i> Strains and a <i>dcpA</i> Gene. Environmental Science & Technology, 2015, 49, 8666-8674.	10.0	28
51	Degradation of pharmaceuticals from membrane biological reactor sludge with Trametes versicolor. Environmental Sciences: Processes and Impacts, 2015, 17, 429-440.	3.5	28
52	Use of stable isotope probing to assess the fate of emerging contaminants degraded by white-rot fungus. Chemosphere, 2014, 103, 336-342.	8.2	27
53	Fungal bioremediation of diuron-contaminated waters: Evaluation of its degradation and the effect of amendable factors on its removal in a trickle-bed reactor under non-sterile conditions. Science of the Total Environment, 2020, 743, 140628.	8.0	26
54	One step purification–immobilization of fuculose-1-phosphate aldolase, a class II DHAP dependent aldolase, by using metal-chelate supports. Enzyme and Microbial Technology, 2006, 39, 22-27.	3.2	25

#	Article	IF	CITATIONS
55	Induction of hydroxyl radical production in Trametes versicolor to degrade recalcitrant chlorinated hydrocarbons. Bioresource Technology, 2009, 100, 5757-5762.	9.6	25
56	Enzymatic condensation of cholecystokinin CCK-8 (4–6) and CCK-8 (7–8) peptide fragments in organic media. , 1997, 56, 456-463.		23
57	A kinetic model for pretreated wheat straw saccharification by cellulase. Journal of Chemical Technology and Biotechnology, 1989, 44, 275-288.	3.2	23
58	Exploring the degradation capability of Trametes versicolor on selected hydrophobic pesticides through setting sights simultaneously on culture broth and biological matrix. Chemosphere, 2020, 250, 126293.	8.2	23
59	Soil colonization by Trametes versicolor grown on lignocellulosic materials: Substrate selection and naproxen degradation. International Biodeterioration and Biodegradation, 2011, 65, 846-852.	3.9	22
60	Application of extended Kalman filter to identification of enzymatic deactivation. Biotechnology and Bioengineering, 1987, 29, 366-369.	3.3	21
61	Detoxification of 1,1,2-trichloroethane to ethene in a bioreactor co-culture of Dehalogenimonas and Dehalococcoides mccartyi strains. Journal of Hazardous Materials, 2017, 331, 218-225.	12.4	21
62	The removal of diuron from agricultural wastewaters by Trametes versicolor immobilized on pinewood in simple channel reactors. Science of the Total Environment, 2020, 728, 138414.	8.0	21
63	Production of arabitol from glucose by Hansenula polymorpha. Journal of Bioscience and Bioengineering, 1990, 70, 228-231.	0.9	20
64	Studies on the expression of recombinant fuculose-1-phosphate aldolase in E. coli. Process Biochemistry, 2004, 39, 1677-1684.	3.7	20
65	Aerobic degradation by whiteâ€rot fungi of trichloroethylene (TCE) and mixtures of TCE and perchloroethylene (PCE). Journal of Chemical Technology and Biotechnology, 2008, 83, 1190-1196.	3.2	20
66	Fungal treatment for the removal of endocrine disrupting compounds from reverse osmosis concentrate: Identification and monitoring of transformation products of benzotriazoles. Chemosphere, 2017, 184, 1054-1070.	8.2	20
67	Coâ€immobilization of P450 BM3 and glucose dehydrogenase on different supports for application as a selfâ€sufficient oxidative biocatalyst. Journal of Chemical Technology and Biotechnology, 2019, 94, 244-255.	3.2	20
68	Direct measurements of IPTG enable analysis of the induction behavior of E. coli in high cell density cultures. Microbial Cell Factories, 2012, 11, 58.	4.0	19
69	A microbial consortium from a biomixture swiftly degrades high concentrations of carbofuran in fluidized-bed reactors. Process Biochemistry, 2016, 51, 1585-1593.	3.7	19
70	Long-term continuous treatment of non-sterile real hospital wastewater by Trametes versicolor. Journal of Biological Engineering, 2019, 13, 47.	4.7	19
71	Influence of Water Activity and Support Material on the Enzymatic Synthesis of a Cck-8 Tripeptide Fragment. Biocatalysis and Biotransformation, 1996, 13, 165-178.	2.0	16
72	A comparison between biostimulation and bioaugmentation in a solid treatment of anaerobic sludge: Drug content and microbial evaluation. Waste Management, 2018, 72, 206-217.	7.4	16

#	Article	IF	CITATIONS
73	Dual carbon - chlorine isotope fractionation during dichloroelimination of 1,1,2-trichloroethane by an enrichment culture containing Dehalogenimonas sp. Science of the Total Environment, 2019, 648, 422-429.	8.0	14
74	Influence of specific growth rate over the secretory expression of recombinant potato carboxypeptidase inhibitor in fed-batch cultures of Escherichia coli. Process Biochemistry, 2010, 45, 1334-1341.	3.7	13
75	Development and Validation of a Liquid Chromatography-Mass Spectrometry Assay for the Quantitation of IPTG in <i>E. Coli</i> Fed-Batch Cultures. Analytical Chemistry, 2010, 82, 5728-5734.	6.5	13
76	Integrated Process for the Enzymatic Synthesis of the Octapeptide PhAcCCK-8. Biotechnology Progress, 2002, 18, 1214-1220.	2.6	12
77	A <i>Streptomyces lividans</i> SipY deficient strain as a host for protein production: standardization of operational alternatives for model proteins. Journal of Chemical Technology and Biotechnology, 2017, 92, 217-223.	3.2	12
78	Enzymatic Synthesis of Trimethyl-Îμ-caprolactone: Process Intensification and Demonstration on a 100 L Scale. Organic Process Research and Development, 2019, 23, 2336-2344.	2.7	12
79	Influence of process variables in a continuous treatment of non-sterile hospital wastewater by Trametes versicolor and novel method for inoculum production. Journal of Environmental Management, 2018, 212, 415-423.	7.8	11
80	Remediation of bentazone contaminated water by Trametes versicolor: Characterization, identification of transformation products, and implementation in a trickle-bed reactor under non-sterile conditions. Journal of Hazardous Materials, 2021, 409, 124476.	12.4	11
81	Comparison between two reactors using Trametes versicolor for agricultural wastewater treatment under non-sterile condition in sequencing batch mode. Journal of Environmental Management, 2021, 293, 112859.	7.8	11
82	Reaction Medium Selection for An Enzymatic Peptide Synthesis in An Aqueous-Organic Two-Phase System. Biocatalysis, 1992, 7, 49-60.	0.9	10
83	Immobilization of PLP-dependent enzymes with cofactor retention and enhanced stability. Biochemical Engineering Journal, 2010, 49, 414-421.	3.6	10
84	A Novel Activity of Immobilized Penicillin G Acylase: Removal of Benzyloxycarbonyl Amino Protecting Group. Biocatalysis and Biotransformation, 2000, 18, 253-258.	2.0	8
85	Required equilibrium studies for designing a three-phase bioreactor to degrade trichloroethylene (TCE) and tetrachloroethylene (PCE) by Trametes versicolor. Chemical Engineering Journal, 2008, 144, 21-27.	12.7	8
86	Ketoisophorone Synthesis with an Immobilized Alcohol Dehydrogenase. ChemCatChem, 2019, 11, 4862-4870.	3.7	8
87	N-Protection of Amino Acid Derivatives Catalyzed by Immobilized Penicillin G Acylase. Biocatalysis and Biotransformation, 1996, 14, 317-332.	2.0	7
88	Reaction Engineering for Consecutive Enzymatic Reactions in Peptide Synthesis: Application to the Synthesis of a Pentapeptide. Biotechnology Progress, 1997, 13, 783-787.	2.6	7
89	Papain Immobilization Study in Enzymatic Synthesis of Dipeptide Gly-Phe. Biocatalysis, 1994, 11, 273-281.	0.9	6
90	Biomass production by a thermotolerant yeast: <i>Hansenula polymorpha</i> . Journal of Chemical Technology and Biotechnology, 1990, 48, 61-70.	3.2	6

#	Article	IF	CITATIONS
91	Trimethyl-ε-caprolactone synthesis with a novel immobilized glucose dehydrogenase and an immobilized thermostable cyclohexanone monooxygenase. Applied Catalysis A: General, 2019, 585, 117187.	4.3	6
92	Expression of metallocarboxypeptidase inhibitors in Escherichia coli: effect of cysteine content and protein size in the secretory production of disulfide-bridged proteins. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1553-1560.	3.0	5
93	Peptide Synthesis in Non-Aqueous Media. , 2000, , 110-132.		5
94	Cloning, expression, and one-step purification/immobilization of two carbohydrate-binding module-tagged alcohol dehydrogenases. Journal of Biological Engineering, 2022, 16, .	4.7	5
95	Synthesis of sulfated bioactive peptides using immobilized arylsulfotransferase from Eubacterium sp Biotechnology Letters, 1996, 18, 609-614.	2.2	3
96	Lipase-catalysed synthesis of natural ethanol esters: effect of water removal on enzyme reutilisation. Journal of Chemical Technology and Biotechnology, 2000, 75, 991-996.	3.2	3
97	Synthesis of a precursor of D-fagomine by immobilized fructose-6-phosphate aldolase. PLoS ONE, 2021, 16, e0250513.	2.5	3
98	New ammonia lyases and amine transaminases: Standardization of production process and preparation of immobilized biocatalysts. Electronic Journal of Biotechnology, 2013, 16, .	2.2	3
99	Optimisation of the operational conditions of trichloroethylene degradation using Trametes versicolor under quinone redox cycling conditions using central composite design methodology. Biodegradation, 2012, 23, 333-341.	3.0	2
100	A novel application of immobilized enzymes: Affinity chromatography separations using enzymes depending of a cofactor. Biotechnology Letters, 1992, 6, 451-454.	0.5	1
101	Title is missing!. Microbial Cell Factories, 2006, 5, P85.	4.0	1
102	Process intensification at the expression system level for the production of 1-phosphate aldolase in antibiotic-free <i>E. coli</i> fed-batch cultures. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	3.0	1