
Matthieu Sainlos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/222507/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Resolution Fluorescence Imaging Combined With Computer Simulations to Quantitate Surface Dynamics and Nanoscale Organization of Neuroligin-1 at Synapses. Frontiers in Synaptic Neuroscience, 2022, 14, 835427.	2.5	2
2	MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. ELife, 2022, 11, .	6.0	9
3	Advanced imaging and labelling methods to decipher brain cell organization and function. Nature Reviews Neuroscience, 2021, 22, 237-255.	10.2	76
4	Role of regulatory Câ€ŧerminal motifs in synaptic confinement of LRRTM2. Biology of the Cell, 2021, 113, 492-506.	2.0	1
5	Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration. Nature Cell Biology, 2021, 23, 1148-1162.	10.3	30
6	Biophysical mechanisms underlying the membrane trafficking of synaptic adhesion molecules. Neuropharmacology, 2020, 169, 107555.	4.1	13
7	TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Reports, 2019, 29, 1130-1146.e8.	6.4	17
8	Functional recruitment of dynamin requires multimeric interactions for efficient endocytosis. Nature Communications, 2019, 10, 4462.	12.8	27
9	Engineering selective competitors for the discrimination of highly conserved protein-protein interaction modules. Nature Communications, 2019, 10, 4521.	12.8	22
10	Differential Nanoscale Topography and Functional Role of GluN2-NMDA Receptor Subtypes at Glutamatergic Synapses. Neuron, 2018, 100, 106-119.e7.	8.1	83
11	A unique intracellular tyrosine in neuroligin-1 regulates AMPA receptor recruitment during synapse differentiation and potentiation. Nature Communications, 2018, 9, 3979.	12.8	40
12	Modulation of AMPA receptor surface diffusion restores hippocampal plasticity and memory in Huntington's disease models. Nature Communications, 2018, 9, 4272.	12.8	62
13	CaMKII Metaplasticity Drives AÎ ² Oligomer-Mediated Synaptotoxicity. Cell Reports, 2018, 23, 3137-3145.	6.4	61
14	Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. ELife, 2018, 7,	6.0	134
15	Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin. Nature Protocols, 2017, 12, 748-763.	12.0	32
16	Nanoscale organization of synaptic adhesion proteins revealed by single-molecule localization microscopy. Neurophotonics, 2016, 3, 041810.	3.3	29
17	Mapping the dynamics and nanoscale organization of synaptic adhesion proteins using monomeric streptavidin. Nature Communications, 2016, 7, 10773.	12.8	137
18	Lengthening of the Stargazin Cytoplasmic Tail Increases Synaptic Transmission by Promoting Interaction to Deeper Domains of PSD-95. Neuron, 2015, 86, 475-489.	8.1	78

MATTHIEU SAINLOS

#	Article	IF	CITATIONS
19	Super Resolution Mapping of Adhesion Molecules in Confined Cellular Environments using Monomeric Streptavidin Ligands. Biophysical Journal, 2014, 106, 202a.	0.5	0
20	Caged Mono- and Divalent Ligands for Light-Assisted Disruption of PDZ Domain-Mediated Interactions. Journal of the American Chemical Society, 2013, 135, 4580-4583.	13.7	24
21	Inhibition of PDZ domain-mediated interactions. Drug Discovery Today: Technologies, 2013, 10, e531-e540.	4.0	22
22	Neurexin-1β Binding to Neuroligin-1 Triggers the Preferential Recruitment of PSD-95 versus Gephyrin through Tyrosine Phosphorylation of Neuroligin-1. Cell Reports, 2013, 3, 1996-2007.	6.4	73
23	Regulation of AMPA receptor surface diffusion by PSD-95 slots. Current Opinion in Neurobiology, 2012, 22, 453-460.	4.2	187
24	Paromomycin and neomycin B derived cationic lipids: Synthesis and transfection studies. Journal of Controlled Release, 2012, 158, 461-469.	9.9	47
25	Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization. Nature Chemical Biology, 2011, 7, 81-91.	8.0	103
26	Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends in Biotechnology, 2010, 28, 73-83.	9.3	260
27	Dynamic and specific interaction between synaptic NR2-NMDA receptor and PDZ proteins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19561-19566.	7.1	86
28	A General Screening Strategy for Peptide-Based Fluorogenic Ligands: Probes for Dynamic Studies of PDZ Domain-Mediated Interactions. Journal of the American Chemical Society, 2009, 131, 6680-6682.	13.7	57
29	Self-assembled lamellar complexes of siRNA with lipidic aminoglycoside derivatives promote efficient siRNA delivery and interference. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16534-16539.	7.1	144
30	Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. Nature Chemical Biology, 2007, 3, 222-228.	8.0	85
31	Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores via on-resin derivatization. Nature Protocols, 2007, 2, 3201-3209.	12.0	19
32	Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores through SPPS-based 'building block' approach. Nature Protocols, 2007, 2, 3210-3218.	12.0	14
33	Synthesis of anhydride precursors of the environment-sensitive fluorophores 4-DMAP and 6-DMN. Nature Protocols, 2007, 2, 3219-3225.	12.0	20
34	Neomycin-capped aromatic platforms: quadruplex DNA recognition and telomerase inhibition. Organic and Biomolecular Chemistry, 2006, 4, 1049.	2.8	64
35	Aminoglycoside-Quinacridine Conjugates: Towards Recognition of the P6.1 Element of Telomerase RNA. ChemBioChem, 2006, 7, 321-329.	2.6	21
36	Kanamycin A-Derived Cationic Lipids as Vectors for Gene Transfection. ChemBioChem, 2005, 6, 1023-1033.	2.6	55

MATTHIEU SAINLOS

#	Article	IF	CITATIONS
37	The Design of Cationic Lipids for Gene Delivery. Current Pharmaceutical Design, 2005, 11, 375-394.	1.9	286
38	Customized fused aromatics for structural recognition of nucleic acids. , 2005, , .		0
39	Aminoglycoside-Derived Cationic Lipids for Gene Transfection: Synthesis of KanamycinÂA Derivatives. European Journal of Organic Chemistry, 2003, 2003, 2764-2774.	2.4	45
40	Progress in Gene Delivery by Cationic Lipids : Guanidinium-Cholesterol-Based Systems as an Example. Current Drug Targets, 2002, 3, 1-16.	2.1	59
41	Mechanical Regulation of the WAVE Complex by Actin Elongation in the Lamellipodium. SSRN Electronic Journal, 0, , .	0.4	0