
Stephen L Lessnick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2224751/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial Dysfunction Is a Driver of SP-2509 Drug Resistance in Ewing Sarcoma. Molecular Cancer Research, 2022, 20, 1035-1046.	3.4	3
2	Chromatin profiling reveals relocalization of lysine-specific demethylase 1 by an oncogenic fusion protein. Epigenetics, 2021, 16, 405-424.	2.7	18
3	Patterns of Translocation Testing in Patients Enrolling in a Cooperative Group Trial for Newly Diagnosed Metastatic Ewing Sarcoma. Archives of Pathology and Laboratory Medicine, 2021, 145, 1564-1568.	2.5	4
4	Phase 1 expansion trial of the LSD1 inhibitor seclidemstat (SP-2577) with and without topotecan and cyclophosphamide (TC) in patients (pts) with relapsed or refractory Ewing sarcoma (ES) and select sarcomas Journal of Clinical Oncology, 2021, 39, TPS11577-TPS11577.	1.6	1
5	The FLI portion of EWS/FLI contributes a transcriptional regulatory function that is distinct and separable from its DNA-binding function in Ewing sarcoma. Oncogene, 2021, 40, 4759-4769.	5.9	14
6	Identification of a Novel <i>FUS/ETV4</i> Fusion and Comparative Analysis with Other Ewing Sarcoma Fusion Proteins. Molecular Cancer Research, 2021, 19, 1795-1801.	3.4	9
7	Network potential identifies therapeutic miRNA cocktails in Ewing sarcoma. PLoS Computational Biology, 2021, 17, e1008755.	3.2	9
8	Survey of Paediatric Oncologists and Pathologists regarding Their Views and Experiences with Variant Translocations in Ewing and Ewing-Like Sarcoma: A Report of the Children's Oncology Group. Sarcoma, 2020, 2020, 1-9.	1.3	12
9	Identifying States of Collateral Sensitivity during the Evolution of Therapeutic Resistance in Ewing's Sarcoma. IScience, 2020, 23, 101293.	4.1	24
10	Mapping the Structure-Function Relationships of Disordered Oncogenic Transcription Factors Using Transcriptomic Analysis. Journal of Visualized Experiments, 2020, , .	0.3	18
11	Protein phosphatase 1 regulatory subunit 1A regulates cell cycle progression in Ewing sarcoma. Oncotarget, 2020, 11, 1691-1704.	1.8	6
12	Increased risk for other cancers in individuals with Ewing sarcoma and their relatives. Cancer Medicine, 2019, 8, 7924-7930.	2.8	3
13	Survival and prognosis with osteosarcoma: outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. European Journal of Cancer, 2019, 109, 36-50.	2.8	354
14	Trabectedin Inhibits EWS-FLI1 and Evicts SWI/SNF from Chromatin in a Schedule-dependent Manner. Clinical Cancer Research, 2019, 25, 3417-3429.	7.0	32
15	Transcriptomic analysis functionally maps the intrinsically disordered domain of EWS/FLI and reveals novel transcriptional dependencies for oncogenesis. Genes and Cancer, 2019, 10, 21-38.	1.9	19
16	Investigating the role of LSD2 as an epigenetic regulator in Ewing sarcoma. Oncotarget, 2019, 10, 3865-3878.	1.8	2
17	EWS–FLI1 increases transcription to cause R-loops and block BRCA1 repair in Ewing sarcoma. Nature, 2018, 555, 387-391.	27.8	222
18	Therapeutic Targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 Engages the Endoplasmic Reticulum Stress Response. Molecular Cancer Therapeutics, 2018, 17, 1902-1916.	4.1	48

STEPHEN L LESSNICK

#	Article	IF	CITATIONS
19	Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the Children's Oncology Group. British Journal of Cancer, 2018, 119, 615-621.	6.4	83
20	Ewing sarcoma resistance to SP-2509 is not mediated through KDM1A/LSD1 mutation. Oncotarget, 2018, 9, 36413-36429.	1.8	10
21	Role for the EWS domain of EWS/FLI in binding GGAA-microsatellites required for Ewing sarcoma anchorage independent growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9870-9875.	7.1	57
22	EWS/FLI is a Master Regulator of Metabolic Reprogramming in Ewing Sarcoma. Molecular Cancer Research, 2017, 15, 1517-1530.	3.4	39
23	Identification of two types of GGAA-microsatellites and their roles in EWS/FLI binding and gene regulation in Ewing sarcoma. PLoS ONE, 2017, 12, e0186275.	2.5	40
24	C/EBPβ-1 promotes transformation and chemoresistance in Ewing sarcoma cells. Oncotarget, 2017, 8, 26013-26026.	1.8	12
25	Comparison of clinical features and outcomes in patients with extraskeletal versus skeletal localized Ewing sarcoma: A report from the Children's Oncology Group. Pediatric Blood and Cancer, 2016, 63, 1771-1779.	1.5	81
26	Identification of Mithramycin Analogues with Improved Targeting of the EWS-FLI1 Transcription Factor. Clinical Cancer Research, 2016, 22, 4105-4118.	7.0	56
27	Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): an open-label, international, randomised controlled trial. Lancet Oncology, The, 2016, 17, 1396-1408.	10.7	356
28	Impact of Two Measures of Micrometastatic Disease on Clinical Outcomes in Patients with Newly Diagnosed Ewing Sarcoma: A Report from the Children's Oncology Group. Clinical Cancer Research, 2016, 22, 3643-3650.	7.0	23
29	Recent advances in targeted therapy for Ewing sarcoma. F1000Research, 2016, 5, 2077.	1.6	45
30	Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition <i>via</i> LSD1 targeting. Oncotarget, 2016, 7, 17616-17630.	1.8	62
31	EWS/FLI utilizes NKX2-2 to repress mesenchymal features of Ewing sarcoma. Genes and Cancer, 2015, 6, 129-143.	1.9	38
32	Targeting Glutathione S-transferase M4 in Ewing sarcoma. Frontiers in Pediatrics, 2014, 2, 83.	1.9	18
33	Reversible LSD1 Inhibition Interferes with Global EWS/ETS Transcriptional Activity and Impedes Ewing Sarcoma Tumor Growth. Clinical Cancer Research, 2014, 20, 4584-4597.	7.0	138
34	Molecular dissection of the mechanism by which EWS/FLI expression compromises actin cytoskeletal integrity and cell adhesion in Ewing sarcoma. Molecular Biology of the Cell, 2014, 25, 2695-2709.	2.1	47
35	Clinical and Biochemical Function of Polymorphic NROB1 GCAA-Microsatellites in Ewing Sarcoma: A Report from the Children's Oncology Group. PLoS ONE, 2014, 9, e104378.	2.5	38
36	ZEB2 Represses the Epithelial Phenotype and Facilitates Metastasis in Ewing Sarcoma. Genes and Cancer, 2013, 4, 486-500.	1.9	46

STEPHEN L LESSNICK

#	Article	IF	CITATIONS
37	EWS and RE1-Silencing Transcription Factor Inhibit Neuronal Phenotype Development and Oncogenic Transformation in Ewing Sarcoma. Genes and Cancer, 2013, 4, 213-223.	1.9	21
38	The EWS/FLI Oncogene Drives Changes in Cellular Morphology, Adhesion, and Migration in Ewing Sarcoma. Genes and Cancer, 2012, 3, 102-116.	1.9	82
39	EWS/FLI-responsive GGAA microsatellites exhibit polymorphic differences between European and African populations. Cancer Genetics, 2012, 205, 304-312.	0.4	34
40	Molecular Pathogenesis of Ewing Sarcoma: New Therapeutic and Transcriptional Targets. Annual Review of Pathology: Mechanisms of Disease, 2012, 7, 145-159.	22.4	160
41	Promiscuous partnerships in Ewing's sarcoma. Cancer Genetics, 2011, 204, 351-365.	0.4	213
42	Emergent Properties of EWS/FLI Regulation via GGAA Microsatellites in Ewing's Sarcoma. Genes and Cancer, 2010, 1, 177-187.	1.9	56
43	Response to "imaging guidelines for children with Ewing sarcoma and osteosarcoma: A report from the Children's Oncology Group Bone Tumor Committee― Pediatric Blood and Cancer, 2008, 51, 839-840.	1.5	3
44	A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle, 2008, 7, 250-256.	2.6	136
45	Microsatellites are EWS/FLI response elements: Genomic "junk" is EWS/FLI's treasure. Cell Cycle, 2008, 7, 3127-3132.	2.6	40
46	Microsatellites as EWS/FLI response elements in Ewing's sarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10149-10154.	7.1	246
47	Signature-Based Small Molecule Screening Identifies Cytosine Arabinoside as an EWS/FLI Modulator in Ewing Sarcoma. PLoS Medicine, 2007, 4, e122.	8.4	129
48	Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma. Cancer Cell, 2006, 9, 405-416.	16.8	307
49	Expression of EWS-ETS Fusions in NIH3T3 Cells Reveals Significant Differences to Ewing's Sarcoma. Cell Cycle, 2006, 5, 2753-2759.	2.6	56
50	NROB1 Is Required for the Oncogenic Phenotype Mediated by EWS/FLI in Ewing's Sarcoma. Molecular Cancer Research, 2006, 4, 851-859.	3.4	182
51	The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell, 2002, 1, 393-401.	16.8	239
52	A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS–family transcription factor, ERG. Nature Genetics, 1994, 6, 146-151.	21.4	693