
## **Diego Rubiales**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2224483/publications.pdf Version: 2024-02-01



DIECO PURIALES

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nanotechnology for parasitic plant control. Pest Management Science, 2009, 65, 540-545.                                                                                                          | 3.4 | 347       |
| 2  | Nanoparticle penetration and transport in living pumpkin plants: in situsubcellular identification.<br>BMC Plant Biology, 2009, 9, 45.                                                           | 3.6 | 331       |
| 3  | Nanoparticles as Smart Treatment-delivery Systems in Plants: Assessment of Different Techniques of<br>Microscopy for their Visualization in Plant Tissues. Annals of Botany, 2008, 101, 187-195. | 2.9 | 303       |
| 4  | Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica, 2006, 147, 1-24.                                                                               | 1.2 | 214       |
| 5  | Cereal landraces for sustainable agriculture. A review. Agronomy for Sustainable Development, 2010,<br>30, 237-269.                                                                              | 5.3 | 197       |
| 6  | Integrated pest management in faba bean. Field Crops Research, 2010, 115, 308-318.                                                                                                               | 5.1 | 174       |
| 7  | Pea (Pisum sativum L.) in the Genomic Era. Agronomy, 2012, 2, 74-115.                                                                                                                            | 3.0 | 172       |
| 8  | Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. Journal of Nanobiotechnology, 2010, 8, 26.                    | 9.1 | 159       |
| 9  | Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi<br>in grain legumes. Euphytica, 2006, 147, 223-253.                                         | 1.2 | 154       |
| 10 | Biology and Management of Weedy Root Parasites. , 2007, , 267-349.                                                                                                                               |     | 154       |
| 11 | Achievements and Challenges in Legume Breeding for Pest and Disease Resistance. Critical Reviews in<br>Plant Sciences, 2015, 34, 195-236.                                                        | 5.7 | 153       |
| 12 | Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica, 2006, 147, 187-199.                                                                          | 1.2 | 137       |
| 13 | Potentially durable resistance mechanisms in plants to specialised fungal pathogens. Euphytica, 2002, 124, 201-216.                                                                              | 1.2 | 136       |
| 14 | Lathyrus improvement for resistance against biotic and abiotic stresses: From classical breeding to marker assisted selection. Euphytica, 2006, 147, 133-147.                                    | 1.2 | 133       |
| 15 | Faba bean breeding for disease resistance. Field Crops Research, 2010, 115, 297-307.                                                                                                             | 5.1 | 128       |
| 16 | Characterization of <i>Lr34,</i> a Major Gene Conferring Nonhypersensitive Resistance to Wheat Leaf<br>Rust. Plant Disease, 1995, 79, 1208.                                                      | 1.4 | 128       |
| 17 | Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species. Annals of<br>Botany, 2009, 103, 423-431.                                                                 | 2.9 | 110       |
| 18 | Innovations in parasitic weeds management in legume crops. A review. Agronomy for Sustainable<br>Development, 2012, 32, 433-449.                                                                 | 5.3 | 109       |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental<br>stages of the parasite. Weed Research, 2005, 45, 379-387.                | 1.7 | 107       |
| 20 | Faba bean breeding for resistance against biotic stresses: Towards application of marker technology.<br>Euphytica, 2006, 147, 67-80.                                          | 1.2 | 104       |
| 21 | Mapping of quantitative trait loci controlling broomrape (Orobanche crenataForsk.) resistance in<br>faba bean (Vicia fabaL.). Genome, 2002, 45, 1057-1063.                    | 2.0 | 103       |
| 22 | Revisiting strategies for reducing the seedbank of <i>Orobanche</i> and <i>Phelipanche</i> spp Weed Research, 2009, 49, 23-33.                                                | 1.7 | 103       |
| 23 | Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L) Theoretical<br>and Applied Genetics, 2004, 108, 1071-1078.                        | 3.6 | 94        |
| 24 | Interaction between Orobanche crenata and its Host Legumes: Unsuccessful Haustorial Penetration and Necrosis of the Developing Parasite. Annals of Botany, 2005, 95, 935-942. | 2.9 | 93        |
| 25 | The role of strigolactones in host specificity of <i>Orobanche</i> and <i>Phelipanche</i> seed germination. Seed Science Research, 2011, 21, 55-61.                           | 1.7 | 92        |
| 26 | A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi).<br>Proteomics, 2006, 6, S163-S174.                                             | 2.2 | 90        |
| 27 | Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica, 2006, 147, 255-272.                                                          | 1.2 | 90        |
| 28 | Macroscopic and Histological Characterisation of Genes er1 and er2 for Powdery Mildew Resistance<br>in Pea. European Journal of Plant Pathology, 2006, 115, 309-321.          | 1.7 | 89        |
| 29 | Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytologist, 2007, 173, 703-712.                                                                | 7.3 | 89        |
| 30 | Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theoretical and Applied Genetics, 2005, 111, 511-520.                                              | 3.6 | 88        |
| 31 | Characterization of resistance in chickpea to crenate broomrape (Orobanche crenata). Weed Science, 2003, 51, 702-707.                                                         | 1.5 | 86        |
| 32 | Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breeding, 2005, 124,<br>313-315.                                                             | 1.9 | 86        |
| 33 | Identification of a New Gene for Resistance to Powdery Mildew in Pisum fulvum, a Wild Relative of<br>Pea. Breeding Science, 2007, 57, 181-184.                                | 1.9 | 84        |
| 34 | Powdery mildew control in pea. A review. Agronomy for Sustainable Development, 2012, 32, 401-409.                                                                             | 5.3 | 84        |
| 35 | Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics, 2013, 14, 562.                  | 2.8 | 84        |
| 36 | A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea<br>(Pisum sativum). Phytochemistry, 2004, 65, 1817-1828.                      | 2.9 | 83        |

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Intercropping with cereals reduces infection by Orobanche crenata in legumes. Crop Protection, 2007, 26, 1166-1172.                                                                                                                                                                          | 2.1 | 83        |
| 38 | Broomrape management in faba bean. Field Crops Research, 2010, 115, 319-328.                                                                                                                                                                                                                 | 5.1 | 79        |
| 39 | Reduced nitric oxide levels during drought stress promote drought tolerance in barley and is associated with elevated polyamine biosynthesis. Scientific Reports, 2017, 7, 13311.                                                                                                            | 3.3 | 79        |
| 40 | Histological Characterization of Resistance to Uromyces viciae-fabae in Faba Bean. Phytopathology,<br>2002, 92, 294-299.                                                                                                                                                                     | 2.2 | 78        |
| 41 | Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Protection, 2003, 22, 865-872.                                                                                                                                                                                  | 2.1 | 78        |
| 42 | ldentification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against<br>rust (Uromyces viciae-fabae) in Vicia faba L Theoretical and Applied Genetics, 2003, 107, 353-358.                                                                                   | 3.6 | 77        |
| 43 | Identification of genes differentially expressed in a resistant reaction to Mycosphaerella pinodes in pea using microarray technology. BMC Genomics, 2011, 12, 28.                                                                                                                           | 2.8 | 77        |
| 44 | Protein cross-linking, peroxidase and β-1,3-endoglucanase involved in resistance of pea against<br>Orobanche crenata. Journal of Experimental Botany, 2006, 57, 1461-1469.                                                                                                                   | 4.8 | 75        |
| 45 | Mucilage production during the incompatible interaction between Orobanche crenata and Vicia sativa. Journal of Experimental Botany, 2006, 57, 931-942.                                                                                                                                       | 4.8 | 74        |
| 46 | Lathyrus diversity: available resources with relevance to crop improvement – L. sativus and L. cicera<br>as case studies. Annals of Botany, 2014, 113, 895-908.                                                                                                                              | 2.9 | 74        |
| 47 | A metabolomic study in oats ( <scp><i>A</i></scp> <i>vena sativa</i> ) highlights a drought tolerance<br>mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and<br>photoâ€oxidative metabolism. Plant, Cell and Environment, 2015, 38, 1434-1452. | 5.7 | 73        |
| 48 | Introduction: Legumes in Sustainable Agriculture. Critical Reviews in Plant Sciences, 2015, 34, 2-3.                                                                                                                                                                                         | 5.7 | 73        |
| 49 | Breeding approaches for crenate broomrape ( <i>Orobanche crenata</i> Forsk.) management in pea<br>( <i>Pisum sativum</i> L.). Pest Management Science, 2009, 65, 553-559.                                                                                                                    | 3.4 | 71        |
| 50 | Quantum Dot and Superparamagnetic Nanoparticle Interaction with Pathogenic Fungi: Internalization and Toxicity Profile. ACS Applied Materials & amp; Interfaces, 2014, 6, 9100-9110.                                                                                                         | 8.0 | 71        |
| 51 | Parasitic plant management in sustainable agriculture. Weed Research, 2009, 49, 1-5.                                                                                                                                                                                                         | 1.7 | 69        |
| 52 | Fatty Acid Profile Changes During Gradual Soil Water Depletion in Oats Suggests a Role for<br>Jasmonates in Coping With Drought. Frontiers in Plant Science, 2018, 9, 1077.                                                                                                                  | 3.6 | 69        |
| 53 | Parasitic plants, wild relatives and the nature of resistance. New Phytologist, 2003, 160, 459-461.                                                                                                                                                                                          | 7.3 | 68        |
| 54 | Acibenzolar- S -methyl-induced resistance to sunflower rust (Puccinia helianthi) is associated with an<br>enhancement of coumarins on foliar surface. Physiological and Molecular Plant Pathology, 2002, 60,<br>155-162.                                                                     | 2.5 | 65        |

| #  | Article                                                                                                                                                                                                                                                  | IF                | CITATIONS         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 55 | Model legumes contribute to faba bean breeding. Field Crops Research, 2010, 115, 253-269.                                                                                                                                                                | 5.1               | 64                |
| 56 | Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp.<br>syriacum. Molecular Breeding, 2008, 21, 439-454.                                                                                                  | 2.1               | 62                |
| 57 | Low Strigolactone Root Exudation: A Novel Mechanism of Broomrape ( <i>Orobanche</i> and) Tj ETQq1 1 0.7<br>Chemistry, 2014, 62, 7063-7071.                                                                                                               | 84314 rgBT<br>5.2 | Överlock 10<br>62 |
| 58 | Locating genes associated with Ascochyta fabae resistance in Vicia faba. Australian Journal of<br>Agricultural Research, 2003, 54, 85.                                                                                                                   | 1.5               | 61                |
| 59 | Search for Resistance to Crenate Broomrape (Orobanche crenata Forsk.) in Pea Germplasm. Genetic<br>Resources and Crop Evolution, 2005, 52, 853-861.                                                                                                      | 1.6               | 60                |
| 60 | Understanding <i>Orobanche</i> and <i>Phelipanche</i> –host plant interactions and developing resistance. Weed Research, 2009, 49, 8-22.                                                                                                                 | 1.7               | 60                |
| 61 | Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata<br>Forsk. in pea (Pisum sativum L.). Molecular Breeding, 2010, 25, 259-272.                                                                         | 2.1               | 60                |
| 62 | Regiolone and Isosclerone, Two Enantiomeric Phytotoxic Naphthalenone Pentaketides: Computational<br>Assignment of Absolute Configuration and Its Relationship with Phytotoxic Activity. European Journal<br>of Organic Chemistry, 2011, 2011, 5564-5570. | 2.4               | 60                |
| 63 | Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Molecular Breeding, 2008, 22, 193-200.                                                                                   | 2.1               | 59                |
| 64 | A High-Density Integrated DArTseq SNP-Based Genetic Map of Pisum fulvum and Identification of QTLs<br>Controlling Rust Resistance. Frontiers in Plant Science, 2018, 9, 167.                                                                             | 3.6               | 58                |
| 65 | Physical and Chemical Barriers in Root Tissues Contribute to Quantitative Resistance to Fusarium oxysporum f. sp. pisi in Pea. Frontiers in Plant Science, 2018, 9, 199.                                                                                 | 3.6               | 58                |
| 66 | Characterization of new sources of resistance to Uromyces viciae-fabae in a germplasm collection of<br>Vicia faba. Plant Pathology, 2000, 49, 389-395.                                                                                                   | 2.4               | 57                |
| 67 | Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces <i>Orobanche</i> and <i>Phelipanche</i> species seed germination. Weed Research, 2010, 50, 262-268.                                                                              | 1.7               | 57                |
| 68 | Characterization of Lr46, a Gene Conferring Partial Resistance to Wheat Leaf Rust. Hereditas, 2004,<br>135, 111-114.                                                                                                                                     | 1.4               | 56                |
| 69 | Identification and characterization of sources of resistance to Erysiphe pisi Syd. in Pisum spp Plant<br>Breeding, 2007, 126, 113-119.                                                                                                                   | 1.9               | 56                |
| 70 | Proteomics: a promising approach to study biotic interaction in legumes. A review. Euphytica, 2006, 147, 37-47.                                                                                                                                          | 1.2               | 55                |
| 71 | Host plant resistance against broomrapes ( <i>Orobanche</i> spp.): defence reactions and mechanisms of resistance. Annals of Applied Biology, 2008, 152, 131-141.                                                                                        | 2.5               | 55                |
| 72 | Genetic Diversity and Population Structure Among Oat Cultivars and Landraces. Plant Molecular<br>Biology Reporter, 2013, 31, 1305-1314.                                                                                                                  | 1.8               | 55                |

| #  | Article                                                                                                                                                                                                                 | IF          | CITATIONS       |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|
| 73 | Mechanism and molecular markers associated with rust resistance in a chickpea interspecific cross<br>(Cicer arietinum × Cicer reticulatum). European Journal of Plant Pathology, 2008, 121, 43-53.                      | 1.7         | 54              |
| 74 | Mapping of quantitative trait loci controlling partial resistance against rust incited by Uromyces pisi<br>(Pers.) Wint. in a Pisum fulvum L. intraspecific cross. Euphytica, 2010, 175, 151-159.                       | 1.2         | 54              |
| 75 | Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Research, 2004, 44, 323-328.                                                                                                 | 1.7         | 53              |
| 76 | Identification and multi-environment validation of resistance to Ascochyta fabae in faba bean (Vicia) Tj ETQq0 C                                                                                                        | ) 0 rgBT /0 | verlock 10 Tf ! |
| 77 | Identification of quantitative trait loci and candidate genes for specific cellular resistance responses<br>against Didymella pinodes in pea. Plant Cell Reports, 2014, 33, 1133-1145.                                  | 5.6         | 53              |
| 78 | Resistance against barley leaf rust (Puccinia hordei) in West-European spring barley germplasm.<br>Agronomy for Sustainable Development, 2000, 20, 769-782.                                                             | 0.8         | 53              |
| 79 | <i>Medicago truncatula</i> as a Model for Nonhost Resistance in Legume-Parasitic Plant Interactions.<br>Plant Physiology, 2007, 145, 437-449.                                                                           | 4.8         | 52              |
| 80 | Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates.<br>Tetrahedron Letters, 2009, 50, 6955-6958.                                                                            | 1.4         | 52              |
| 81 | A detailed evaluation method to identify sources of quantitative resistance to <i>Fusarium oxysporum</i> f. sp. <i>pisi</i> race 2 within a <i>Pisum</i> spp. germplasm collection. Plant Pathology, 2012, 61, 532-542. | 2.4         | 52              |
| 82 | Adaptation of spring faba bean types across European climates. Field Crops Research, 2013, 145, 1-9.                                                                                                                    | 5.1         | 52              |
| 83 | The Effect of Orobanche crenata Infection Severity in Faba Bean, Field Pea, and Grass Pea Productivity.<br>Frontiers in Plant Science, 2016, 7, 1409.                                                                   | 3.6         | 52              |
| 84 | Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp European<br>Journal of Plant Pathology, 2013, 135, 761-769.                                                                         | 1.7         | 51              |
| 85 | Didymella pinodes and its management in field pea: Challenges and opportunities. Field Crops Research, 2013, 148, 61-77.                                                                                                | 5.1         | 51              |
| 86 | Quantitative Trait Loci Associated to Drought Adaptation in Pea (Pisum sativum L.). Plant Molecular<br>Biology Reporter, 2015, 33, 1768-1778.                                                                           | 1.8         | 51              |
| 87 | Resistance to broomrape ( <i>Orobanche crenata</i> ) in faba bean ( <i>Vicia faba</i> ): cell wall changes<br>associated with prehaustorial defensive mechanisms. Annals of Applied Biology, 2007, 151, 89-98.          | 2.5         | 50              |
| 88 | Control of Orobanche crenata in legumes intercropped with fenugreek (Trigonella foenum-graecum).<br>Crop Protection, 2008, 27, 653-659.                                                                                 | 2.1         | 50              |
| 89 | Identification and multi-environment validation of resistance to Botrytis fabae in Vicia faba. Field<br>Crops Research, 2009, 114, 84-90.                                                                               | 5.1         | 50              |
| 90 | Identification of common genomic regions controlling resistance to Mycosphaerella pinodes,<br>earliness and architectural traits in different pea genetic backgrounds. Euphytica, 2011, 182, 43-52.                     | 1.2         | 50              |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Avoidance of rust infection by some genotypes ofHordeum chilensedue to their relative inability to induce the formation of appressoria. Physiological and Molecular Plant Pathology, 1996, 49, 89-101.               | 2.5 | 49        |
| 92  | Infection Structures of Host-Specialized Isolates of Uromyces viciae-fabae and of Other Species of Uromyces Infecting Leguminous Crops. Plant Disease, 2005, 89, 17-22.                                              | 1.4 | 49        |
| 93  | Trigoxazonane, a monosubstituted trioxazonane from Trigonella foenum-graecum root exudate,<br>inhibits Orobanche crenata seed germination. Phytochemistry, 2007, 68, 2487-2492.                                      | 2.9 | 49        |
| 94  | Polyphenols, Including the New Peapolyphenols Aâ^'C, from Pea Root Exudates Stimulate Orobanche foetida Seed Germination. Journal of Agricultural and Food Chemistry, 2010, 58, 2902-2907.                           | 5.2 | 49        |
| 95  | Faba bean adaptation to autumn sowing under European climates. Agronomy for Sustainable<br>Development, 2012, 32, 727-734.                                                                                           | 5.3 | 49        |
| 96  | Intercropping reduces Mycosphaerella pinodes severity and delays upward progress on the pea plant.<br>Crop Protection, 2010, 29, 744-750.                                                                            | 2.1 | 48        |
| 97  | Inter-cropping with berseem clover (Trifolium alexandrinum) reduces infection by Orobanche crenata in legumes. Crop Protection, 2010, 29, 867-871.                                                                   | 2.1 | 48        |
| 98  | Future Prospects for Ascochyta Blight Resistance Breeding in Cool Season Food Legumes. Frontiers in<br>Plant Science, 2012, 3, 27.                                                                                   | 3.6 | 48        |
| 99  | Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Protection, 2012, 34, 65-69.               | 2.1 | 48        |
| 100 | Infection of chickpea (Cicer arietinum) by crenate broomrape (Orobanche crenata) as influenced by sowing date and weather conditions. Agronomy for Sustainable Development, 2003, 23, 359-362.                       | 0.8 | 48        |
| 101 | Identification of sources of resistance to crenate broomrape ( <i>Orobanche crenata</i> ) in Spanish<br>lentil ( <i>Lens culinaris</i> ) germplasm. Weed Research, 2008, 48, 85-94.                                  | 1.7 | 47        |
| 102 | Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry, 2015, 115, 44-58.                                                                              | 2.9 | 47        |
| 103 | Variation Among and Within Populations of the Parasitic Weed Orobanche crenata from Spain and<br>Israel Revealed by Inter Simple Sequence Repeat Markers. Phytopathology, 2002, 92, 1262-1266.                       | 2.2 | 46        |
| 104 | Characterization of wheat DArT markers: genetic and functional features. Molecular Genetics and Genomics, 2012, 287, 741-753.                                                                                        | 2.1 | 46        |
| 105 | Genetic Relationships among Orobanche Species as Revealed by RAPD Analysis. Annals of Botany, 2003, 91, 637-642.                                                                                                     | 2.9 | 45        |
| 106 | Resistance against broomrapes (Orobanche and Phelipanche spp.) in faba bean (Vicia faba) based in low<br>induction of broomrape seed germination. Euphytica, 2012, 186, 897-905.                                     | 1.2 | 45        |
| 107 | Two-Dimensional Electrophoresis Based Proteomic Analysis of the Pea ( <i>Pisum sativum</i> ) in<br>Response to <i>Mycosphaerella pinodes</i> . Journal of Agricultural and Food Chemistry, 2010, 58,<br>12822-12832. | 5.2 | 44        |
| 108 | Confirmation that the <i>Er3</i> gene, conferring resistance to <i>Erysiphe pisi</i> in pea, is a different gene from <i>er1</i> and <i>er2</i> genes. Plant Breeding, 2011, 130, 281-282.                           | 1.9 | 44        |

| #   | Article                                                                                                                                                                                                                                                                   | IF         | CITATIONS         |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------|
| 109 | Identification and multi-environment validation of resistance against broomrapes (Orobanche) Tj ETQq1 1 0.7843                                                                                                                                                            | 14.fgBT /( | Overlock 10<br>44 |
| 110 | Adaptation of oat (Avena sativa) cultivars to autumn sowings in Mediterranean environments. Field<br>Crops Research, 2014, 156, 111-122.                                                                                                                                  | 5.1        | 44                |
| 111 | Sources of Resistance to Crenate Broomrape Among Species of Vicia. Plant Disease, 2005, 89, 23-27.                                                                                                                                                                        | 1.4        | 43                |
| 112 | Effect of Fungal and Plant Metabolites on Broomrapes ( <i>Orobanche</i> and <i>Phelipanche</i> spp.)<br>Seed Germination and Radicle Growth. Journal of Agricultural and Food Chemistry, 2014, 62,<br>10485-10492.                                                        | 5.2        | 43                |
| 113 | Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew<br>(Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties<br>and landraces. Frontiers in Plant Science, 2015, 6, 103. | 3.6        | 43                |
| 114 | Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis. Frontiers in Plant Science, 2015, 6, 178.                                                                                                                 | 3.6        | 43                |
| 115 | Tritordeum: Triticale's New Brother Cereal. Developments in Plant Breeding, 1996, , 57-72.                                                                                                                                                                                | 0.2        | 43                |
| 116 | Genetic diversity in Orobanche crenata populations from southern Spain. Theoretical and Applied Genetics, 2001, 103, 1108-1114.                                                                                                                                           | 3.6        | 42                |
| 117 | Characterization of resistance response of pea ( <i>Pisum</i> spp.) against rust ( <i>Uromyces pisi</i> ).<br>Plant Breeding, 2009, 128, 665-670.                                                                                                                         | 1.9        | 42                |
| 118 | Genetic analysis of durable resistance against leaf rust in durum wheat. Molecular Breeding, 2009, 24,<br>25-39.                                                                                                                                                          | 2.1        | 41                |
| 119 | Soyasapogenol B and <i>trans</i> â€22â€dehydrocam―pesterol from common vetch ( <i>Vicia sativa</i> L.)<br>root exudates stimulate broomrape seed germination. Pest Management Science, 2011, 67, 1015-1022.                                                               | 3.4        | 41                |
| 120 | Genome-wide identification and comparison of legume MLO gene family. Scientific Reports, 2016, 6, 32673.                                                                                                                                                                  | 3.3        | 41                |
| 121 | Variation in resistance to Orobanche crenata in species of Cicer. Weed Research, 2004, 44, 27-32.                                                                                                                                                                         | 1.7        | 40                |
| 122 | Resistance to broomrape in wild lentils ( <i>Lens</i> spp.). Plant Breeding, 2009, 128, 266-270.                                                                                                                                                                          | 1.9        | 40                |
| 123 | Benzothiadiazole and BABA improve resistance to Uromyces pisi (Pers.) Wint. in Pisum sativum L. with<br>an enhancement of enzymatic activities and total phenolic content. European Journal of Plant<br>Pathology, 2010, 128, 483-493.                                    | 1.7        | 40                |
| 124 | Agronomic, breeding, and biotechnological approaches to parasitic plant management through manipulation of germination stimulant levels in agricultural soils. Botany, 2011, 89, 813-826.                                                                                 | 1.0        | 40                |
| 125 | Identification of the Main Toxins Isolated from <i>Fusarium oxysporum</i> f. sp. <i>pisi</i> Race 2 and<br>Their Relation with Isolates' Pathogenicity. Journal of Agricultural and Food Chemistry, 2014, 62,<br>2574-2580.                                               | 5.2        | 40                |
| 126 | Identification of resistance to Uromyces pisi (Pers.) Wint. in Pisum spp. germplasm. Field Crops<br>Research, 2009, 114, 198-203.                                                                                                                                         | 5.1        | 39                |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Chemical control of faba bean rust (Uromyces viciae-fabae). Crop Protection, 2011, 30, 907-912.                                                                                                                                                    | 2.1 | 39        |
| 128 | Effects of crop mixtures on chocolate spot development on faba bean grown in mediterranean climates. Crop Protection, 2011, 30, 1015-1023.                                                                                                         | 2.1 | 39        |
| 129 | QTLs for Orobanche spp. resistance in faba bean: identification and validation across different environments. Molecular Breeding, 2013, 32, 909-922.                                                                                               | 2.1 | 39        |
| 130 | Field response of Lathyrus cicera germplasm to crenate broomrape (Orobanche crenata). Field Crops<br>Research, 2009, 113, 321-327.                                                                                                                 | 5.1 | 38        |
| 131 | Hordeum chilense resistance to powdery mildew and its potential use in cereal breeding. Euphytica, 1993, 67, 215-220.                                                                                                                              | 1.2 | 37        |
| 132 | Effect of sowing date and host resistance on the establishment and development of Orobanche crenata in faba bean and common vetch. Weed Research, 2004, 44, 282-288.                                                                               | 1.7 | 37        |
| 133 | Crenate broomrape control in pea by foliar application of benzothiadiazole (BTH). Phytoparasitica, 2004, 32, 21-29.                                                                                                                                | 1.2 | 37        |
| 134 | Identification of QTLs for powdery mildew and scald resistance in barley. Euphytica, 2006, 151, 421-429.                                                                                                                                           | 1.2 | 37        |
| 135 | Identification by suppression subtractive hybridization and expression analysis of Medicago<br>truncatula putative defence genes in response to Orobanche crenata parasitization. Physiological and<br>Molecular Plant Pathology, 2007, 70, 49-59. | 2.5 | 37        |
| 136 | Inhibition of Orobanche crenata Seed Germination and Radicle Growth by Allelochemicals Identified in Cereals. Journal of Agricultural and Food Chemistry, 2013, 61, 9797-9803.                                                                     | 5.2 | 37        |
| 137 | Allelic diversity in the transcriptomes of contrasting rust-infected genotypes of Lathyrus sativus, a<br>lasting resource for smart breeding. BMC Plant Biology, 2014, 14, 376.                                                                    | 3.6 | 37        |
| 138 | Genetic analysis of root morphological traits in wheat. Molecular Genetics and Genomics, 2015, 290,<br>785-806.                                                                                                                                    | 2.1 | 37        |
| 139 | Resistance to broomrape species (Orobanche spp.) in common vetch (Vicia sativa L.). Crop Protection, 2009, 28, 7-12.                                                                                                                               | 2.1 | 36        |
| 140 | First Report of Orobanche foetida on Common Vetch (Vicia sativa) in Morocco. Plant Disease, 2005, 89,<br>528-528.                                                                                                                                  | 1.4 | 36        |
| 141 | Characterization of resistance to powdery mildew (Erysiphe pisi) in a germplasm collection of<br>Lathyrus sativus. Plant Breeding, 2006, 125, 308-310.                                                                                             | 1.9 | 35        |
| 142 | Host differentiation in Orobanche foetida Poir. Flora: Morphology, Distribution, Functional Ecology of Plants, 2007, 202, 201-208.                                                                                                                 | 1.2 | 35        |
| 143 | The resistance to leaf rust and powdery mildew of recombinant lines of barley (Hordeum vulgare L.)<br>derived from H.ïį¼⁄2vulgareïį¼2×H.ïį¼2bulbosum crosses. Plant Breeding, 2007, 126, 259-267.                                                  | 1.9 | 35        |
| 144 | Variability of interactions between barrel medic ( <i>Medicago truncatula</i> ) genotypes and<br><i>Orobanche </i> species. Annals of Applied Biology, 2008, 153, 117-126.                                                                         | 2.5 | 35        |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Resistance to powdery mildew ( <i>Blumeria graminis</i> f.sp. <i>avenae</i> ) in oat seedlings and adult plants. Plant Pathology, 2011, 60, 846-856.                                                          | 2.4 | 35        |
| 146 | Proteomic Analysis of Pea (Pisum sativum L.) Response During Compatible and Incompatible<br>Interactions with the Pea Aphid (Acyrthosiphon pisum H.). Plant Molecular Biology Reporter, 2014, 32,<br>697-718. | 1.8 | 35        |
| 147 | Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica, 2015, 201, 89-95.                                    | 1.2 | 35        |
| 148 | Genetic diversity of Moroccan populations of <i>Orobanche foetida</i> : evolving from parasitising wild hosts to crop plants. Weed Research, 2008, 48, 179-186.                                               | 1.7 | 34        |
| 149 | Transferability of molecular markers from major legumes to Lathyrus spp. for their application in mapping and diversity studies. Molecular Biology Reports, 2014, 41, 269-283.                                | 2.3 | 34        |
| 150 | Prehaustorial Resistance against Alfalfa Rust (Uromyces striatus) in Medicago truncatula. European<br>Journal of Plant Pathology, 2004, 110, 239-243.                                                         | 1.7 | 33        |
| 151 | Constitutive Coumarin Accumulation on Sunflower Leaf Surface Prevents Rust Germ Tube Growth and Appressorium Differentiation. Crop Science, 2007, 47, 1119-1124.                                              | 1.8 | 33        |
| 152 | Fenugreek root exudates show speciesâ€specific stimulation of <i>Orobanche</i> seed germination.<br>Weed Research, 2008, 48, 163-168.                                                                         | 1.7 | 33        |
| 153 | Stimulation of Seed Germination of Orobanche Species by Ophiobolin A and Fusicoccin Derivatives.<br>Journal of Agricultural and Food Chemistry, 2008, 56, 8343-8347.                                          | 5.2 | 33        |
| 154 | Differential response of pea (Pisum sativum) to rusts incited by Uromyces viciae-fabae and U. pisi. Crop<br>Protection, 2009, 28, 980-986.                                                                    | 2.1 | 33        |
| 155 | Identification and characterization of partial resistance to rust in a germplasm collection of <i>Lathyrus sativus</i> L Plant Breeding, 2009, 128, 495-500.                                                  | 1.9 | 33        |
| 156 | Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early<br>response of Pisum sativum to Orobanche crenata. Journal of Experimental Botany, 2012, 63, 107-119.        | 4.8 | 33        |
| 157 | Identification and mapping of quantitative trait loci for leaf rust resistance derived from a tetraploid wheat Triticum dicoccum accession. Molecular Breeding, 2014, 34, 1659-1675.                          | 2.1 | 33        |
| 158 | A fertile amphiploid between diploid wheat ( <i>Triticum tauschii</i> ) and crested wheatgrass<br>( <i>Agropyron cristatum</i> ). Genome, 1999, 42, 519-524.                                                  | 2.0 | 32        |
| 159 | Morphology and AFLP markers suggest three <i>Hordeum chilense</i> ecotypes that differ in avoidance to rust fungi. Canadian Journal of Botany, 2001, 79, 204-213.                                             | 1.1 | 32        |
| 160 | Pathogenic Specialization of Puccinia triticina in Andalusia from 1998 to 2000. Journal of<br>Phytopathology, 2005, 153, 344-349.                                                                             | 1.0 | 32        |
| 161 | Transformation and regeneration of the holoparasitic plant Phelipanche aegyptiaca. Plant Methods, 2011, 7, 36.                                                                                                | 4.3 | 32        |
| 162 | Fusarium Wilt Management in Legume Crops. Agronomy, 2020, 10, 1073.                                                                                                                                           | 3.0 | 32        |

| #   | Article                                                                                                                                                                                                                                        | IF       | CITATIONS      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|
| 163 | Morphology and AFLP markers suggest three <i>Hordeum chilense</i> ecotypes that differ in avoidance to rust fungi. Canadian Journal of Botany, 2001, 79, 204-213.                                                                              | 1.1      | 32             |
| 164 | Higher rust resistance and similar yield of oat landraces versus cultivars under high temperature and drought. Agronomy for Sustainable Development, 2017, 37, 1.                                                                              | 5.3      | 31             |
| 165 | Quantitative Analysis of Target Peptides Related to Resistance Against <i>Ascochyta</i> Blight<br>( <i>Peyronellaea pinodes</i> ) in Pea. Journal of Proteome Research, 2020, 19, 1000-1012.                                                   | 3.7      | 31             |
| 166 | Grain Yield Stability of Cereal-Legume Intercrops Is Greater Than Sole Crops in More Productive Conditions. Agriculture (Switzerland), 2021, 11, 255.                                                                                          | 3.1      | 31             |
| 167 | Comparative proteomic analysis of BTH and BABA-induced resistance in pea (Pisum sativum) toward infection with pea rust (Uromyces pisi). Journal of Proteomics, 2012, 75, 5189-5205.                                                           | 2.4      | 30             |
| 168 | Pinolide, a New Nonenolide Produced by Didymella pinodes, the Causal Agent of Ascochyta Blight on<br>Pisum sativum. Journal of Agricultural and Food Chemistry, 2012, 60, 5273-5278.                                                           | 5.2      | 30             |
| 169 | Identification of resistance to Ascochyta fabae in Vicia faba germplasm. Plant Breeding, 2001, 120, 529-531.                                                                                                                                   | 1.9      | 29             |
| 170 | Characterization of the Orobanche-Medicago truncatula association for studying early stages of the parasite-host interaction. Weed Research, 2004, 44, 218-223.                                                                                | 1.7      | 29             |
| 171 | Characterization of Resistance Mechanisms to <i>Erysiphe pisi</i> in <i>Medicago truncatula</i> .<br>Phytopathology, 2007, 97, 1049-1053.                                                                                                      | 2.2      | 29             |
| 172 | New Chemical Clues for Broomrape-Sunflower Hostâ~'Parasite Interactions: Synthesis of<br>Guaianestrigolactones. Journal of Agricultural and Food Chemistry, 2009, 57, 5853-5864.                                                               | 5.2      | 29             |
| 173 | Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus) Tj ETQq1 1                                                                                                                                  | 0.784314 | l rgBT /Overlo |
| 174 | Erysiphe trifolii is able to overcome er1 and Er3, but not er2, resistance genes in pea. European Journal<br>of Plant Pathology, 2013, 136, 557-563.                                                                                           | 1.7      | 29             |
| 175 | Induction of Haustorium Development by Sphaeropsidones in Radicles of the Parasitic Weeds<br><i>Striga</i> and <i>Orobanche</i> . A Structure–Activity Relationship Study. Journal of Agricultural<br>and Food Chemistry, 2016, 64, 5188-5196. | 5.2      | 29             |
| 176 | Legume breeding for rust resistance: lessons to learn from the model Medicago truncatula.<br>Euphytica, 2011, 180, 89-98.                                                                                                                      | 1.2      | 28             |
| 177 | Screening faba bean for chocolate spot resistance: evaluation methods and effects of age of host tissue and temperature. European Journal of Plant Pathology, 2012, 132, 443-453.                                                              | 1.7      | 28             |
| 178 | Clarification on Host Range of Didymella pinodes the Causal Agent of Pea Ascochyta Blight. Frontiers<br>in Plant Science, 2016, 7, 592.                                                                                                        | 3.6      | 28             |
| 179 | Natural Variation in Portuguese Common Bean Germplasm Reveals New Sources of Resistance Against<br><i>Fusarium oxysporum</i> f. sp. <i>phaseoli</i> and Resistance-Associated Candidate Genes.<br>Phytopathology, 2020, 110, 633-647.          | 2.2      | 28             |
| 180 | Omics resources and omics-enabled approaches for achieving high productivity and improved quality in pea (Pisum sativum L.). Theoretical and Applied Genetics, 2021, 134, 755-776.                                                             | 3.6      | 28             |

| #   | Article                                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Low Appressorium Formation by Rust Fungi onHordeum chilenseLines. Phytopathology, 1992, 82, 1007.                                                                                                                                                                                                                                   | 2.2 | 28        |
| 182 | Disease resistance in pea (Pisum sativum L.) types for autumn sowings in Mediterranean environments -<br>a review. Czech Journal of Genetics and Plant Breeding, 2009, 45, 135-142.                                                                                                                                                 | 0.8 | 27        |
| 183 | Botrytone, a New Naphthalenone Pentaketide Produced by Botrytis fabae, the Causal Agent of<br>Chocolate Spot Disease on Vicia faba. Journal of Agricultural and Food Chemistry, 2011, 59, 9201-9206.                                                                                                                                | 5.2 | 27        |
| 184 | Identification of Sources of Quantitative Resistance to <i>Fusarium oxysporum</i> f. sp.<br><i>medicaginis</i> in <i>Medicago truncatula</i> . Plant Disease, 2014, 98, 667-673.                                                                                                                                                    | 1.4 | 27        |
| 185 | Models, Developments, and Perspectives of Mutual Legume Intercropping. Advances in Agronomy, 2015, 130, 337-419.                                                                                                                                                                                                                    | 5.2 | 27        |
| 186 | Gene expression profiling of <i>Medicago truncatula</i> roots in response to the parasitic plant<br><i>Orobanche crenata</i> . Weed Research, 2009, 49, 66-80.                                                                                                                                                                      | 1.7 | 26        |
| 187 | Induction of Systemic Acquired Resistance in Pea against Rust (Uromyces pisi) by Exogenous<br>Application of Biotic and Abiotic Inducers. Journal of Phytopathology, 2010, 158, 30-34.                                                                                                                                              | 1.0 | 26        |
| 188 | BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin<br>accumulation. Planta, 2015, 242, 1095-1106.                                                                                                                                                                                | 3.2 | 26        |
| 189 | Histopathology of the infection on resistant and susceptible lentil accessions by two contrasting pathotypes of Fusarium oxysporum f.sp. lentis. European Journal of Plant Pathology, 2017, 148, 53-63.                                                                                                                             | 1.7 | 26        |
| 190 | Understanding photothermal interactions will help expand production range and increase genetic diversity of lentil ( <i>Lens culinaris</i> Medik.). Plants People Planet, 2021, 3, 171-181.                                                                                                                                         | 3.3 | 26        |
| 191 | Population genetics in weedy species of <i>Orobanche</i> . Australasian Plant Pathology, 2009, 38, 228.                                                                                                                                                                                                                             | 1.0 | 25        |
| 192 | Ryecyanatines A and B and ryecarbonitrilines A and B, substituted cyanatophenol,<br>cyanatobenzo[1,3]dioxole, and benzo[1,3]dioxolecarbonitriles from rye (Secale cereale L.) root<br>exudates: Novel metabolites with allelopathic activity on Orobanche seed germination and radicle<br>growth. Phytochemistry, 2015, 109, 57-65. | 2.9 | 25        |
| 193 | QTLs for ascochyta blight resistance in faba bean (Vicia faba L.): validation in field and controlled conditions. Crop and Pasture Science, 2016, 67, 216.                                                                                                                                                                          | 1.5 | 25        |
| 194 | Legume Breeding for the Agroecological Transition of Global Agri-Food Systems: A European<br>Perspective. Frontiers in Plant Science, 2021, 12, 782574.                                                                                                                                                                             | 3.6 | 25        |
| 195 | Antifungal Activity of a New Phenolic Compound from Capitulum of a Head Rot-resistant Sunflower<br>Genotype. Journal of Chemical Ecology, 2007, 33, 2245-2253.                                                                                                                                                                      | 1.8 | 24        |
| 196 | Pre and posthaustorial resistance to rusts in Lathyrus cicera L Euphytica, 2009, 165, 27-34.                                                                                                                                                                                                                                        | 1.2 | 24        |
| 197 | Identification of Genes Involved in Resistance to Didymella pinodes in Pea by deepSuperSAGE<br>Transcriptome Profiling. Plant Molecular Biology Reporter, 2014, 32, 258-269.                                                                                                                                                        | 1.8 | 24        |
| 198 | Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv. syringae in<br>pea (Pisum sativum L.). Euphytica, 2012, 186, 805-812.                                                                                                                                                                  | 1.2 | 23        |

| #   | Article                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Genetic resistance to powdery mildew in common bean. Euphytica, 2012, 186, 875-882.                                                                                                                                                                                                                              | 1.2 | 23        |
| 200 | Lentisone, a New Phytotoxic Anthraquinone Produced by Ascochyta lentis, the Causal Agent of<br>Ascochyta Blight in Lens culinaris. Journal of Agricultural and Food Chemistry, 2013, 61, 7301-7308.                                                                                                              | 5.2 | 23        |
| 201 | Complexation of sesquiterpene lactones with cyclodextrins: synthesis and effects on their activities on parasitic weeds. Organic and Biomolecular Chemistry, 2017, 15, 6500-6510.                                                                                                                                | 2.8 | 23        |
| 202 | Defence reactions of <i>Hordeum chilense</i> accessions to three formae speciales of cereal powdery mildew fungi. Canadian Journal of Botany, 2000, 78, 1561-1570.                                                                                                                                               | 1.1 | 23        |
| 203 | The reaction of x Tritordeum and its Triticum spp. and Hordeum chilense parents to rust diseases.<br>Euphytica, 1991, 54, 75-81.                                                                                                                                                                                 | 1.2 | 22        |
| 204 | Genetic Variation Among and Within <i>Uromyces</i> Species Infecting Legumes. Journal of Phytopathology, 2008, 156, 419-424.                                                                                                                                                                                     | 1.0 | 22        |
| 205 | Identification and characterization of sources of resistance in <i>Avena sativa</i> , <i>A.Âbyzantina</i><br>and <i>A.Âstrigosa</i> germplasm against a pathotype of <i>Puccinia coronata</i> f.sp. <i>avenae</i><br>with virulence against the <i>Pc94</i> resistance gene. Plant Pathology, 2012, 61, 315-322. | 2.4 | 22        |
| 206 | Response of vetches (Vicia spp.) to specialized forms of Uromyces vicia-fabae and to Uromyces pisi.<br>Crop Protection, 2013, 46, 38-43.                                                                                                                                                                         | 2.1 | 22        |
| 207 | Identification of pathotypes in Fusarium oxysporum f.sp. lentis. European Journal of Plant Pathology, 2016, 144, 539-549.                                                                                                                                                                                        | 1.7 | 22        |
| 208 | Identification and multi-environment validation of resistance to pea weevil (Bruchus pisorum) in<br>Pisum germplasm. Journal of Pest Science, 2018, 91, 505-514.                                                                                                                                                 | 3.7 | 22        |
| 209 | Pisatin involvement in the variation of inhibition of <i>Fusarium oxysporum</i> f. sp. <i>pisi</i> spore germination by root exudates of <i>Pisum</i> spp. germplasm. Plant Pathology, 2018, 67, 1046-1054.                                                                                                      | 2.4 | 22        |
| 210 | Resistance to Septoria tritici in Hordeum chilense x Triticum spp. Amphiploids. Plant Breeding, 1992,<br>109, 281-286.                                                                                                                                                                                           | 1.9 | 21        |
| 211 | Resistance reaction to powdery mildew (Erysiphe pisi) in a germplasm collection of Lathyrus cicera from Iberian origin. Genetic Resources and Crop Evolution, 2007, 54, 1517-1521.                                                                                                                               | 1.6 | 21        |
| 212 | Characterisation of resistance to crenate broomrape (Orobanche crenata Forsk.) in Lathyrus cicera L<br>Euphytica, 2010, 173, 77-84.                                                                                                                                                                              | 1.2 | 21        |
| 213 | Parasitic plant infection is partially controlled through symbiotic pathways. Weed Research, 2010, 50, 76-82.                                                                                                                                                                                                    | 1.7 | 21        |
| 214 | Phylogenetic Analysis of Uromyces Species Infecting Grain and Forage Legumes by Sequence analysis of<br>Nuclear Ribosomal Internal Transcribed Spacer Region. Journal of Phytopathology, 2011, 159, 137-145.                                                                                                     | 1.0 | 21        |
| 215 | Multiple-disease resistance in Vicia faba: Multi-environment field testing for identification of combined resistance to rust and chocolate spot. Field Crops Research, 2011, 124, 59-65.                                                                                                                         | 5.1 | 21        |
| 216 | Characterization of Resistance Mechanisms in Faba Bean (Vicia faba) against Broomrape Species<br>(Orobanche and Phelipanche spp.). Frontiers in Plant Science, 2016, 7, 1747.                                                                                                                                    | 3.6 | 21        |

| #   | Article                                                                                                                                                                                                               | IF               | CITATIONS    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|
| 217 | Phthalimideâ€derived strigolactone mimics as germinating agents for seeds of parasitic weeds. Pest<br>Management Science, 2016, 72, 2069-2081.                                                                        | 3.4              | 21           |
| 218 | Er3 gene, conferring resistance to powdery mildew in pea, is located in pea LGIV. Euphytica, 2018, 214, 1.                                                                                                            | 1.2              | 21           |
| 219 | Penetration resistance to Erysiphe pisi in pea mediated by er1 gene is associated with protein cross-linking but not with callose apposition or hypersensitive response. Euphytica, 2015, 201, 381-387.               | 1.2              | 20           |
| 220 | Antifeedant activity of long-chain alcohols, and fungal and plant metabolites against pea aphid<br>( <i>Acyrthosiphon pisum</i> ) as potential biocontrol strategy. Natural Product Research, 2019, 33,<br>2471-2479. | 1.8              | 20           |
| 221 | Faba bean. , 2021, , 452-481.                                                                                                                                                                                         |                  | 20           |
| 222 | Resistance to leaf rust in cultivars of bread wheat and durum wheat grown in Spain. Plant Breeding, 2007, 126, 13-18.                                                                                                 | 1.9              | 19           |
| 223 | Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. European<br>Journal of Plant Pathology, 2007, 119, 53-58.                                                                        | 1.7              | 19           |
| 224 | Twoâ€dimensional gel electrophoresisâ€based proteomic analysis of the <i>Medicago truncatula</i> –rust<br>( <i>Uromyces striatus</i> ) interaction. Annals of Applied Biology, 2010, 157, 243-257.                    | 2.5              | 19           |
| 225 | First genetic linkage map of Lathyrus cicera based on RNA sequencing-derived markers: Key tool for genetic mapping of disease resistance. Horticulture Research, 2018, 5, 45.                                         | 6.3              | 19           |
| 226 | Editorial: Advances in Ascochyta Research. Frontiers in Plant Science, 2018, 9, 22.                                                                                                                                   | 3.6              | 19           |
| 227 | Cereal Landraces for Sustainable Agriculture. , 2011, , 147-186.                                                                                                                                                      |                  | 19           |
| 228 | A fertile amphiploid between diploid wheat ( <i>Triticum tauschii</i> ) and crested<br>wheatgrass ( <i>Agropyron cristatum</i> ). Genome, 1999, 42, 519-524.                                                          | 2.0              | 19           |
| 229 | Advances in disease and pest resistance in faba bean. Theoretical and Applied Genetics, 2022, 135, 3735-3756.                                                                                                         | 3.6              | 19           |
| 230 | Targeting sources of drought tolerance within an Avena spp. collection through multivariate approaches. Planta, 2012, 236, 1529-1545.                                                                                 | 3.2              | 18           |
| 231 | Identification and characterization of resistance to rust (Uromyces ciceris-arietini (Grognot) Jacz.) Tj ETQq1 1 0.7                                                                                                  | 784314 rg<br>1.2 | gBT10verlock |
| 232 | Clarification on rust species potentially infecting pea (Pisum sativum L.) crop and host range of<br>Uromyces pisi (Pers.) Wint. Crop Protection, 2012, 37, 65-70.                                                    | 2.1              | 18           |
| 233 | Identification of pre―and posthaustorial resistance to rust ( <i><scp>U</scp>romyces viciaeâ€fabae</i> )<br>in lentil ( <i><scp>L</scp>ens culinaris</i> ) germplasm. Plant Breeding, 2013, 132, 676-680.             | 1.9              | 18           |
| 234 | Differences in Crenate Broomrape Parasitism Dynamics on Three Legume Crops Using a Thermal Time<br>Model. Frontiers in Plant Science, 2016, 7, 1910.                                                                  | 3.6              | 18           |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Inhibition of early development stages of rust fungi by the two fungal metabolites cyclopaldic acid<br>and <i>epi</i> â€epoformin. Pest Management Science, 2017, 73, 1161-1168.                                                            | 3.4 | 18        |
| 236 | Identification of quantitative trait loci (QTL) controlling resistance to pea weevil (Bruchus pisorum)<br>in a high-density integrated DArTseq SNP-based genetic map of pea. Scientific Reports, 2020, 10, 33.                              | 3.3 | 18        |
| 237 | Diseases and their management , 2007, , 497-519.                                                                                                                                                                                            |     | 18        |
| 238 | Avirulence factors corresponding to barley genes Pa3 and Pa7 which confer resistance against<br>Puccinia hordei in rust fungi other than P. hordei. Physiological and Molecular Plant Pathology, 1994,<br>45, 321-331.                      | 2.5 | 17        |
| 239 | QTL mapping provides evidence for lack of association of the avoidance of leaf rust in Hordeum chilense with stomata density. Theoretical and Applied Genetics, 2003, 106, 1283-1292.                                                       | 3.6 | 17        |
| 240 | Differential Effects of Phenylalanine Ammonia Lyase, Cinnamyl Alcohol Dehydrogenase, and Energetic<br>Metabolism Inhibition on Resistance of Appropriate Host and Nonhost Cereal–Rust Interactions.<br>Phytopathology, 2007, 97, 1578-1583. | 2.2 | 17        |
| 241 | Transcription factor profiling leading to the identification of putative transcription factors<br>involved in the Medicago truncatula–Uromyces striatus interaction. Theoretical and Applied<br>Genetics, 2010, 121, 1311-1321.             | 3.6 | 17        |
| 242 | Differential gene transcript accumulation in peas in response to powdery mildew (Erysiphe pisi)<br>attack. Euphytica, 2014, 198, 13-28.                                                                                                     | 1.2 | 17        |
| 243 | Resistance reaction of Medicago truncatula genotypes to Fusarium oxysporum: effect of plant age, substrate and inoculation method. Crop and Pasture Science, 2015, 66, 506.                                                                 | 1.5 | 17        |
| 244 | Abnormal germling development by brown rust and powdery mildew on cer barley mutants. Hereditas, 2004, 135, 271-276.                                                                                                                        | 1.4 | 16        |
| 245 | Identification of resistance to Fusarium oxysporum f.sp. lentis in Spanish lentil germplasm. European<br>Journal of Plant Pathology, 2015, 143, 399-405.                                                                                    | 1.7 | 16        |
| 246 | Free polyamine and polyamine regulation during preâ€penetration and penetration resistance events in<br>oat against crown rust ( <i>Puccinia coronata</i> f. sp. <i>avenae</i> ). Plant Pathology, 2016, 65,<br>392-401.                    | 2.4 | 16        |
| 247 | Legumes in sustainable agriculture. Crop and Pasture Science, 2017, 68, i.                                                                                                                                                                  | 1.5 | 16        |
| 248 | Title is missing!. Euphytica, 2000, 115, 221-224.                                                                                                                                                                                           | 1.2 | 15        |
| 249 | Uromyces Viciae-fabae Haustorium Formation in Susceptible and Resistant Faba Bean Lines. European<br>Journal of Plant Pathology, 2003, 109, 71-73.                                                                                          | 1.7 | 15        |
| 250 | A Fertile Amphiploid between Durum Wheat (Triticum Turgidurn) and the ×Agroticum Amphiploid<br>(Agropyron cristatum × T. Tauschii). Hereditas, 2004, 135, 183-186.                                                                          | 1.4 | 15        |
| 251 | Histological responses in <i>Hordeum chilense</i> to brown and yellow rust fungi. Plant Pathology, 1992, 41, 611-617.                                                                                                                       | 2.4 | 15        |
| 252 | Legume breeding for broomrape resistance. Czech Journal of Genetics and Plant Breeding, 2014, 50, 144-150.                                                                                                                                  | 0.8 | 15        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Legume Crops and Biotrophic Pathogen Interactions: A Continuous Cross-Talk of a Multilayered Array of Defense Mechanisms. Plants, 2020, 9, 1460.                                                                      | 3.5 | 15        |
| 254 | Avoidance of leaf rust fungi in wild relatives of cultivated cereals. Euphytica, 1996, 87, 1-6.                                                                                                                       | 1.2 | 14        |
| 255 | Occurrence of Didymella fabae, the Teleomorph of Ascochyta fabae, on Faba Bean Straw in Spain.<br>Journal of Phytopathology, 2002, 150, 146-148.                                                                      | 1.0 | 14        |
| 256 | Registration of RIL58â€ILC72/Cr5, a Chickpea Germplasm Line with Rust and Ascochyta Blight Resistance.<br>Crop Science, 2006, 46, 2331-2332.                                                                          | 1.8 | 14        |
| 257 | Effects of Phenylpropanoid and Energetic Metabolism Inhibition on Faba Bean Resistance Mechanisms<br>to Rust. Phytopathology, 2007, 97, 60-65.                                                                        | 2.2 | 14        |
| 258 | Reaction of tritordeum to Fusarium culmorum and Septoria nodorum. Euphytica, 1996, 88, 165-174.                                                                                                                       | 1.2 | 13        |
| 259 | Mildew-resistant mutants induced in North American two- and six-rowed malting barley cultivars.<br>Theoretical and Applied Genetics, 2003, 107, 1278-1287.                                                            | 3.6 | 13        |
| 260 | Meiotic Pairing in a Trigeneric Hybrid Triticum Tauschii-Agropyron Cristatum-Hordeum Chilense.<br>Hereditas, 1998, 129, 113-118.                                                                                      | 1.4 | 13        |
| 261 | Resistance to rusts (Uromyces pisi and U. viciae-fabae) in pea. Czech Journal of Genetics and Plant<br>Breeding, 2014, 50, 135-143.                                                                                   | 0.8 | 13        |
| 262 | Assessment of field pea (Pisum sativum L.) grain yield, aerial biomass and flowering date stability in<br>Mediterranean environments. Crop and Pasture Science, 2017, 68, 915.                                        | 1.5 | 13        |
| 263 | Identification of tolerance to metribuzin and imazethapyr herbicides in faba bean. Crop Science, 2021, 61, 2593-2611.                                                                                                 | 1.8 | 13        |
| 264 | Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp Agronomy, 2021, 11, 36.                                                                          | 3.0 | 13        |
| 265 | Role of partial resistance to Puccinia hordei in barley in the defence of barley to inappropriate rust<br>fungi. Physiological and Molecular Plant Pathology, 1994, 45, 219-228.                                      | 2.5 | 12        |
| 266 | Prospects for Exploitation of Disease Resistance from Hordeum Chilense in Cultivated Cereals.<br>Hereditas, 2004, 135, 161-169.                                                                                       | 1.4 | 12        |
| 267 | Extent and pattern of genetic differentiation within and between European populations of<br><i>Phelipanche ramosa</i> revealed by amplified fragment length polymorphism analysis. Weed<br>Research, 2009, 49, 48-55. | 1.7 | 12        |
| 268 | Differential response of pea (Pisum sativum) to Orobanche crenata, Orobanche foetida and<br>Phelipanche aegyptiaca. Crop Protection, 2012, 31, 27-30.                                                                 | 2.1 | 12        |
| 269 | Rapid and Efficient Estimation of Pea Resistance to the Soil-Borne Pathogen Fusarium oxysporum by<br>Infrared Imaging. Sensors, 2015, 15, 3988-4000.                                                                  | 3.8 | 12        |
| 270 | Labelâ€free quantitative proteomic analysis of tolerance to drought in <i>Pisum sativum</i> .<br>Proteomics, 2016, 16, 2776-2787.                                                                                     | 2.2 | 12        |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Identification and multi-environment validation of resistance to rust (Uromyces viciae-fabae) in Vicia<br>faba. Crop and Pasture Science, 2017, 68, 1013.                                                                     | 1.5 | 12        |
| 272 | Multi-Environmental Trials Reveal Genetic Plasticity of Oat Agronomic Traits Associated With Climate<br>Variable Changes. Frontiers in Plant Science, 2018, 9, 1358.                                                          | 3.6 | 12        |
| 273 | A diversity of resistance sources to Fusarium oxysporum f. sp. pisi found within grass pea germplasm.<br>Plant and Soil, 2021, 463, 19-38.                                                                                    | 3.7 | 12        |
| 274 | Crop Diversification to Control Powdery Mildew in Pea. Agronomy, 2021, 11, 690.                                                                                                                                               | 3.0 | 12        |
| 275 | Diseases and their management , 2009, , 262-281.                                                                                                                                                                              |     | 12        |
| 276 | Short Communication Resistance to common bunt in Hordeum chilense X Triticum spp. Amphiploids.<br>Plant Breeding, 1996, 115, 416-418.                                                                                         | 1.9 | 11        |
| 277 | Defence reactions of <i>Hordeum chilense</i> accessions to three formae speciales of cereal powdery<br>mildew fungi. Canadian Journal of Botany, 2000, 78, 1561-1570.                                                         | 1.1 | 11        |
| 278 | Comparative proteomic analysis of <i>Orobanche</i> and <i>Phelipanche</i> species inferred from seed proteins. Weed Research, 2009, 49, 81-87.                                                                                | 1.7 | 11        |
| 279 | Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth. Frontiers in Plant Science, 2015, 6, 408.                                              | 3.6 | 11        |
| 280 | High productivity of dry pea genotypes resistant to crenate broomrape in Mediterranean environments. Agronomy for Sustainable Development, 2017, 37, 1.                                                                       | 5.3 | 11        |
| 281 | Editorial: Advances in Parasitic Weed Research. Frontiers in Plant Science, 2018, 9, 236.                                                                                                                                     | 3.6 | 11        |
| 282 | Identification of potential candidate genes controlling pea aphid tolerance in a <scp><i>Pisum<br/>fulvum</i></scp> highâ€density integrated DArTseq SNPâ€based genetic map. Pest Management Science,<br>2020, 76, 1731-1742. | 3.4 | 11        |
| 283 | Disclosing the Nutritional Quality Diversity of Portuguese Common Beans—The Missing Link for Their<br>Effective Use in Protein Quality Breeding Programs. Agronomy, 2021, 11, 221.                                            | 3.0 | 11        |
| 284 | Effects of crop mixtures on rust development on faba bean grown in Mediterranean climates. Crop<br>Protection, 2021, 146, 105686.                                                                                             | 2.1 | 11        |
| 285 | First Report of Crenate Broomrape ( <i>Orobanche crenata</i> ) on Lentil ( <i>Lens culinaris</i> ) and<br>Common Vetch ( <i>Vicia sativa</i> ) in Salamanca Province, Spain. Plant Disease, 2008, 92, 1368-1368.              | 1.4 | 11        |
| 286 | Adaptability and Stability of Faba Bean (Vicia faba L.) Accessions under Diverse Environments and<br>Herbicide Treatments. Plants, 2022, 11, 251.                                                                             | 3.5 | 11        |
| 287 | Searching for Abiotic Tolerant and Biotic Stress Resistant Wild Lentils for Introgression Breeding<br>Through Predictive Characterization. Frontiers in Plant Science, 2022, 13, 817849.                                      | 3.6 | 11        |
| 288 | Histology of the infection of tritordeum and its parents by cereal brown rusts. Plant Pathology, 1993, 42, 93-99.                                                                                                             | 2.4 | 10        |

| #   | Article                                                                                                                                                                                                                                 | IF              | CITATIONS         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| 289 | Title is missing!. Euphytica, 1999, 109, 157-159.                                                                                                                                                                                       | 1.2             | 10                |
| 290 | Search for Partial Resistance to Leaf Rust in a Collection of Ancient Spanish Wheats. Hereditas, 2004, 135, 193-197.                                                                                                                    | 1.4             | 10                |
| 291 | Genetic diversity in two variants of Orobanche gracilis Sm. [var. gracilis and var. deludens (Beck) A.<br>Pujadas] (Orobanchaceae) from different regions of Spain. Electronic Journal of Biotechnology, 2007,<br>10, 0-0.              | 2.2             | 10                |
| 292 | Characterization of Resistance Mechanisms to Powdery Mildew (Erysiphe betae) in Beet (Beta) Tj ETQq0 0 0 rgBT                                                                                                                           | Overlock        | 10 Tf 50 62<br>10 |
| 293 | Identification of resistance to rust ( <i><scp>U</scp>romyces appendiculatus</i> ) and powdery mildew<br>( <i><scp>E</scp>rysiphe diffusa</i> ) in <scp>P</scp> ortuguese common bean germplasm. Plant<br>Breeding, 2013, 132, 654-657. | 1.9             | 10                |
| 294 | Resistance to rust and powdery mildew in Lathyrus crops. Czech Journal of Genetics and Plant<br>Breeding, 2014, 50, 116-122.                                                                                                            | 0.8             | 10                |
| 295 | Changes in polyamine profile in host and non-host oat–powdery mildew interactions. Phytochemistry<br>Letters, 2014, 8, 207-212.                                                                                                         | 1.2             | 10                |
| 296 | Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection. Frontiers in Plant<br>Science, 2015, 6, 517.                                                                                                           | 3.6             | 10                |
| 297 | Identification and characterisation of antixenosis and antibiosis to pea aphid ( <i>Acyrthosiphon) Tj ETQq1 1 0.784</i>                                                                                                                 | 314 rgBT<br>2.5 | /Overlock 1       |
| 298 | Resistance to Anthracnose (Colletotrichum lentis, Race 0) in Lens spp. Germplasm. Agronomy, 2020, 10,<br>1799.                                                                                                                          | 3.0             | 10                |
| 299 | Partial Resistance Against <i>Erysiphe pisi</i> and <i>E. trifolii</i> Under Different Genetic Control in<br><i>Lathyrus cicera</i> : Outcomes from a Linkage Mapping Approach. Plant Disease, 2020, 104, 2875-2884.                    | 1.4             | 10                |
| 300 | Shared and tailored common bean transcriptomic responses to combined fusarium wilt and water deficit. Horticulture Research, 2021, 8, 149.                                                                                              | 6.3             | 10                |
| 301 | Advances in pea breeding. Burleigh Dodds Series in Agricultural Science, 2019, , 575-606.                                                                                                                                               | 0.2             | 10                |
| 302 | Genomic regions associated with herbicide tolerance in a worldwide faba bean (Vicia faba L.)<br>collection. Scientific Reports, 2022, 12, 158.                                                                                          | 3.3             | 10                |
| 303 | Grass Pea (Lathyrus sativus L.)—A Sustainable and Resilient Answer to Climate Challenges. Agronomy,<br>2022, 12, 1324.                                                                                                                  | 3.0             | 10                |
| 304 | A Fertile Amphiploid between a Wild Barley ( <i>Hordeum chilense</i> ) and Crested Wheatgrass<br>( <i>Agropyron cristatum</i> ). International Journal of Plant Sciences, 1999, 160, 783-786.                                           | 1.3             | 9                 |
| 305 | Impact of fungal and plant metabolites application on early development stages of pea powdery<br>mildew. Pest Management Science, 2019, 75, 2464-2473.                                                                                  | 3.4             | 9                 |
| 306 | Adaptation of Grass Pea (Lathyrus sativus) to Mediterranean Environments. Agronomy, 2020, 10, 1295.                                                                                                                                     | 3.0             | 9                 |

| #   | Article                                                                                                                                                                                             | IF                            | CITATIONS   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|
| 307 | Pea Breeding Lines Adapted to Autumn Sowings in Broomrape Prone Mediterranean Environments.<br>Agronomy, 2021, 11, 769.                                                                             | 3.0                           | 9           |
| 308 | Metabolomics profile responses to changing environments in a common bean (Phaseolus vulgaris L.) germplasm collection. Food Chemistry, 2022, 370, 131003.                                           | 8.2                           | 9           |
| 309 | Genomic Constitution and Expression of Disease Resistance in Agropyron cristatum * Durum Wheat Derivatives. Breeding Science, 2007, 57, 17-21.                                                      | 1.9                           | 9           |
| 310 | Title is missing!. Euphytica, 2001, 122, 369-372.                                                                                                                                                   | 1.2                           | 8           |
| 311 | Effect of Host Plant Resistance on Haustorium Formation in Cereal Rust Fungi. Journal of<br>Phytopathology, 2004, 152, 381-382.                                                                     | 1.0                           | 8           |
| 312 | Partial Resistance to Leaf Rust in a Collection of Ancient Spanish Barleys. Hereditas, 2004, 135, 199-203.                                                                                          | 1.4                           | 8           |
| 313 | Identification of a new pathotype of Puccinia hordei with virulence for the resistance gene Rph7.<br>European Journal of Plant Pathology, 2006, 116, 103-106.                                       | 1.7                           | 8           |
| 314 | Plant Defense Responses in Medicago truncatula Unveiled by Microarray Analysis. Plant Molecular<br>Biology Reporter, 2015, 33, 569-583.                                                             | 1.8                           | 8           |
| 315 | Editorial: Advances in Legume Research. Frontiers in Plant Science, 2018, 9, 501.                                                                                                                   | 3.6                           | 8           |
| 316 | Flower and Pod Source Influence on Pea Weevil (Bruchus pisorum) Oviposition Capacity and Preference. Frontiers in Plant Science, 2019, 10, 491.                                                     | 3.6                           | 8           |
| 317 | Genetic diversity and structure of Fusarium oxysporum f.sp. lentis isolates from Iran, Syria and<br>Algeria. European Journal of Plant Pathology, 2019, 153, 1019-1029.                             | 1.7                           | 8           |
| 318 | Broomrape Threat to Agriculture. Outlooks on Pest Management, 2020, 31, 141-145.                                                                                                                    | 0.2                           | 8           |
| 319 | The <i>MLO1</i> powdery mildew susceptibility gene in <i>Lathyrus</i> species: The power of highâ€density linkage maps in comparative mapping and synteny analysis. Plant Genome, 2021, 14, e20090. | 2.8                           | 8           |
| 320 | Inhibition of Spore Germination and Appressorium Formation of Rust Species by Plant and Fungal<br>Metabolites. Natural Product Communications, 2016, 11, 1343-1347.                                 | 0.5                           | 8           |
| 321 | Hybrids Between Hordeum vulgare and Tetra-, Hexa-, and Octoploid Tritordeums (Amphiploid H.) Tj ETQq1 1 0.78                                                                                        | 34314 rgB <sup>-</sup><br>1.4 | T /Overlock |
| 322 | Identification and characterisation of resistance against rust (Puccinia allii) in garlic (Allium sp.)<br>germplasm. Annals of Applied Biology, 2011, 159, 93-98.                                   | 2.5                           | 7           |
| 323 | Unveiling common responses of Medicago truncatula to appropriate and inappropriate rust species.<br>Frontiers in Plant Science, 2014, 5, 618.                                                       | 3.6                           | 7           |
| 324 | Detection of partial resistance quantitative trait loci against Didymella pinodes in Medicago<br>truncatula. Molecular Breeding, 2014, 33, 589-599.                                                 | 2.1                           | 7           |

| #   | Article                                                                                                                                                                               | IF              | CITATIONS     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------|
| 325 | Characterization of Transcription Factors Following Expression Profiling of Medicago<br>truncatula–Botrytis spp. Interactions. Plant Molecular Biology Reporter, 2014, 32, 1030-1040. | 1.8             | 7             |
| 326 | Cytoskeleton reorganization/disorganization is a key feature of induced inaccessibility for defence to successive pathogen attacks. Molecular Plant Pathology, 2017, 18, 662-671.     | 4.2             | 7             |
| 327 | Application of Crop Growth Models to Assist Breeding for Intercropping: Opportunities and Challenges. Frontiers in Plant Science, 2022, 13, 720486.                                   | 3.6             | 7             |
| 328 | Association Mapping of Lathyrus sativus Disease Response to Uromyces pisi Reveals Novel Loci<br>Underlying Partial Resistance. Frontiers in Plant Science, 2022, 13, 842545.          | 3.6             | 7             |
| 329 | Agronomic Performance of Broomrape Resistant and Susceptible Faba Bean Accession. Agronomy, 2022, 12, 1421.                                                                           | 3.0             | 7             |
| 330 | Determinate Faba Bean Young Pod Response to Glyphosate and Crenate Broomrape (Orobanche) Tj ETQq0 0 0 i                                                                               | gBT /Over       | lock 10 Tf 50 |
| 331 | Search for partial resistance against Puccinia hordei in barley landraces from the Fertile Crescent.<br>Plant Breeding, 2006, 125, 343-346.                                           | 1.9             | 6             |
| 332 | Las leguminosas grano en la agricultura española y europea. Arbor, 2016, 192, a311.                                                                                                   | 0.3             | 6             |
| 333 | Allelopathy for Parasitic Plant Management. Natural Product Communications, 2018, 13, 1934578X1801300.                                                                                | 0.5             | 6             |
| 334 | Broomrape as a Major Constraint for Grass Pea (Lathyrus sativus) Production in Mediterranean<br>Rain-Fed Environments. Agronomy, 2020, 10, 1931.                                      | 3.0             | 6             |
| 335 | Heat Waves and Broomrape Are the Major Constraints for Lentil Cultivation in Southern Spain.<br>Agronomy, 2021, 11, 1871.                                                             | 3.0             | 6             |
| 336 | Screening for Resistance to Leaf Rust (Puccinia hordei) in a Collection of Spanish Barleys. Breeding<br>Science, 2006, 56, 173-177.                                                   | 1.9             | 6             |
| 337 | The contribution of Hordeum chilense to partial resistance of tritordeum to wheat brown rust.<br>Euphytica, 1992, 59, 129-133.                                                        | 1.2             | 5             |
| 338 | Identification and expression analysis of a MYB family transcription factor in the parasitic plant<br>Orobanche ramosa. Annals of Applied Biology, 2007, 150, 123-130.                | 2.5             | 5             |
| 339 | Resistance of <i>Hordeum chilense</i> against loose smuts of wheat and barley ( <i>Ustilago tritici) Tj ETQq1 1 (</i>                                                                 | ).784314<br>1.9 | rg&T /Overloc |
| 340 | Grass Pea. Handbook of Plant Breeding, 2015, , 251-265.                                                                                                                               | 0.1             | 5             |
| 341 | Inhibition of Spore Germination and Appressorium Formation of Rust Species by Plant and Fungal Metabolites. Natural Product Communications, 2016, 11, 1934578X1601100.                | 0.5             | 5             |
| 342 | Grass pea and pea phylogenetic relatedness reflected at Fusarium oxysporum host range. Crop<br>Protection, 2021, 141, 105495.                                                         | 2.1             | 5             |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | First Report of Crenate Broomrape ( <i>Orobanche crenata</i> ) on White Lupine ( <i>Lupinus albus</i> )<br>Growing in Alkaline Soils in Spain and Egypt. Plant Disease, 2009, 93, 970-970.                                         | 1.4 | 5         |
| 344 | The legume manifesto: (Net)workers on Fabaceae, unite!. Ratarstvo I Povrtarstvo, 2011, 48, 253-258.                                                                                                                                | 0.5 | 5         |
| 345 | Grass pea natural variation reveals oligogenic resistance to <i>Fusarium oxysporum</i> f. sp.<br><i>pisi</i> . Plant Genome, 2021, 14, e20154.                                                                                     | 2.8 | 5         |
| 346 | Portuguese Common Bean Natural Variation Helps to Clarify the Genetic Architecture of the Legume's<br>Nutritional Composition and Protein Quality. Plants, 2022, 11, 26.                                                           | 3.5 | 5         |
| 347 | Anthraquinones and their analogues as potential biocontrol agents of rust and powdery mildew diseases of field crops. Pest Management Science, 2022, , .                                                                           | 3.4 | 5         |
| 348 | Response of Vicia species to Ascochyta fabae and Uromyces viciae-fabae. Czech Journal of Genetics and<br>Plant Breeding, 2014, 50, 109-115.                                                                                        | 0.8 | 4         |
| 349 | Compromised Photosynthetic Electron Flow and H2O2 Generation Correlate with Genotype-Specific<br>Stomatal Dysfunctions during Resistance against Powdery Mildew in Oats. Frontiers in Plant Science,<br>2016, 7, 1660.             | 3.6 | 4         |
| 350 | Characterization of the Resistance to Powdery Mildew and Leaf Rust Carried by the Bread Wheat<br>Cultivar Victo. International Journal of Molecular Sciences, 2021, 22, 3109.                                                      | 4.1 | 4         |
| 351 | Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. , 2007, , 53-58.                                                                                                                              |     | 4         |
| 352 | Development of Quantitative Real-Time PCR Assays to Quantify Erysiphe pisi and Erysiphe trifolii and Its<br>Implementation for Monitoring Their Relative Prevalence in Pea Crops in Spain and Tunisia. Agronomy,<br>2022, 12, 334. | 3.0 | 4         |
| 959 | Evaluation of performance and stability of new sources for tolerance to post-emergence herbicides                                                                                                                                  |     |           |

| #   | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Abiotic and Biotic Stresses Interaction in Fabaceae Plants. Contributions from the Grain<br>Legumes/Soilborne Vascular Diseases/Drought Stress Triangle. , 2020, , 237-260.                                                                                   |     | 2         |
| 362 | Advances in understanding plant root response to weedy root parasites. Burleigh Dodds Series in Agricultural Science, 2021, , 215-230.                                                                                                                        | 0.2 | 1         |
| 363 | Identification of resistance to tan spot ( <i>Pyrenophora triticiâ€repentis</i> ) in <i>Hordeum<br/>chilense</i> and its expression in its amphiploids with diploid, tetraploid and hexaploid<br><i>Triticum</i> species. Plant Breeding, 2012, 131, 579-583. | 1.9 | 0         |
| 364 | Potential of Tritordeum as a New Cereal Crop. , 1994, , 443-445.                                                                                                                                                                                              |     | 0         |
| 365 | Developing pest- and disease-resistant cultivars of grain legumes. Burleigh Dodds Series in Agricultural Science, 2018, , 155-176.                                                                                                                            | 0.2 | Ο         |
| 366 | Aleksandar Mikić, the legume (re)searcher. , 0, , .                                                                                                                                                                                                           |     | 0         |