List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2223923/publications.pdf Version: 2024-02-01

NORIVUKI YANACIDA

#	Article	IF	CITATIONS
1	Natural History of Allergy to Hen's Egg: A Prospective Study in Children Aged 6 to 12 Years. International Archives of Allergy and Immunology, 2022, 183, 14-24.	2.1	11
2	Personalized management for unmet needs with food allergy. Current Opinion in Allergy and Clinical Immunology, 2022, 22, 160-166.	2.3	4
3	Anaphylaxis to winter melon due to crossâ€reactivity of sensitization to ragweed pollen. Pediatric Allergy and Immunology, 2022, 33, e13764.	2.6	2
4	Clinical crossâ€reactivity to quail's egg in patients with hen's egg allergy. Pediatric Allergy and Immunology, 2022, 33, e13754.	2.6	3
5	Long-term follow-up of fixed low-dose oral immunotherapy for children with wheat-induced anaphylaxis. Journal of Allergy and Clinical Immunology: in Practice, 2022, 10, 1117-1119.e2.	3.8	8
6	Long-term outcomes of oral immunotherapy for anaphylactic egg allergy in children. , 2022, 1, 138-144.		3
7	Crossâ€reactivity of each fraction among cereals in children with wheat allergy. Pediatric Allergy and Immunology, 2022, 33, .	2.6	3
8	Threshold and safe ingestion dose among infants sensitized to hen's egg. Pediatric Allergy and Immunology, 2022, 33, .	2.6	2
9	Formation of IgE-Allergen-CD23 Complex Changes in Children Treated with Subcutaneous Immunotherapy for Japanese Cedar Pollinosis. International Archives of Allergy and Immunology, 2021, 182, 190-194.	2.1	2
10	Food proteinâ€induced enterocolitis syndrome triggered by egg yolk and egg white. Pediatric Allergy and Immunology, 2021, 32, 618-621.	2.6	8
11	Timing of onset of allergic symptoms following lowâ€dose milk and egg challenges. Pediatric Allergy and Immunology, 2021, 32, 612-615.	2.6	5
12	Safe egg yolk consumption after a negative result for lowâ€dose egg oral food challenge. Pediatric Allergy and Immunology, 2021, 32, 170-176.	2.6	6
13	A randomized trial of oral immunotherapy for pediatric cow's milkâ€induced anaphylaxis: Heated vs unheated milk. Pediatric Allergy and Immunology, 2021, 32, 161-169.	2.6	21
14	Longâ€ŧerm followâ€up of fixed lowâ€dose oral immunotherapy for children with severe cow's milk allergy. Pediatric Allergy and Immunology, 2021, 32, 734-741.	2.6	19
15	Low-dose oral immunotherapy for walnut allergy with anaphylaxis: Three case reports. Allergology International, 2021, 70, 392-394.	3.3	8
16	Treatmentâ€requiring accidental ingestion and risk factors among nursery children with food allergy. Pediatric Allergy and Immunology, 2021, 32, 1377-1380.	2.6	2
17	Precision medicine for cow's milk immunotherapy in clinical practice. Current Opinion in Allergy and Clinical Immunology, 2021, 21, 378-385.	2.3	2
18	History of immediate reactions changes the predictive accuracy for pediatric peanut allergy. Allergology International, 2021, , .	3.3	2

#	Article	IF	CITATIONS
19	Long-term prognosis after wheat oral immunotherapy. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 371-374.e5.	3.8	6
20	Component-resolved diagnostics can be useful for identifying hazelnut allergy in Japanese children. Allergology International, 2020, 69, 239-245.	3.3	12
21	Japanese guidelines for food allergy 2020. Allergology International, 2020, 69, 370-386.	3.3	139
22	Novel insights regarding anaphylaxis in children ―With a focus on prevalence, diagnosis, and treatment. Pediatric Allergy and Immunology, 2020, 31, 879-888.	2.6	20
23	Lowâ€doseâ€oral immunotherapy for children with wheatâ€induced anaphylaxis. Pediatric Allergy and Immunology, 2020, 31, 371-379.	2.6	35
24	Regular intake of cow's milk with oral immunotherapy improves statures of children with milk allergies. World Allergy Organization Journal, 2020, 13, 100108.	3.5	6
25	Evaluation of oral immunotherapy efficacy and safety by maintenance dose dependency: A multicenter randomized study. World Allergy Organization Journal, 2020, 13, 100463.	3.5	16
26	Ses i 1-specific IgE and sesame oral food challenge results. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 2084-2086.e4.	3.8	19
27	Accidental ingestion of food allergens: A nationwide survey of Japanese nursery schools. Pediatric Allergy and Immunology, 2019, 30, 773-776.	2.6	16
28	lgE-specific Pru p 4 negatively predicts systemic allergy reaction to peach among Japanese children. Allergology International, 2019, 68, 546-548.	3.3	6
29	Risk factors of severe accidental ingestion in nursery school: A nation-wide survey. Journal of Allergy and Clinical Immunology, 2019, 143, AB148.	2.9	1
30	Long-term outcomes after sustained unresponsiveness in patients who underwent oral immunotherapy for egg, cow's milk, or wheat allergy. Allergology International, 2019, 68, 527-528.	3.3	21
31	Stepwise single-dose oral egg challenge: a multicenter prospective study. Journal of Allergy and Clinical Immunology: in Practice, 2019, 7, 716-718.e6.	3.8	14
32	Long-term outcome of oral immunotherapy. Nihon Shoni Arerugi Gakkaishi the Japanese Journal of Pediatric Allergy and Clinical Immunology, 2019, 33, 68-74.	0.2	0
33	Food sensitization rate and immediate-type food allergy incidence among infantile atopic dermatitis. Journal of Allergy and Clinical Immunology, 2018, 141, AB162.	2.9	0
34	Oral food challenge using different target doses and time intervals between doses. Current Opinion in Allergy and Clinical Immunology, 2018, 18, 222-227.	2.3	12
35	Lowâ€dose oral immunotherapy for children with anaphylactic peanut allergy in Japan. Pediatric Allergy and Immunology, 2018, 29, 512-518.	2.6	43
36	Increasing specific immunoglobulin E levels correlate with the risk of anaphylaxis during an oral food challenge. Pediatric Allergy and Immunology, 2018, 29, 417-424.	2.6	45

#	Article	IF	CITATIONS
37	Specific IgE for Fag e 3 Predicts Oral Buckwheat Food Challenge Test Results and Anaphylaxis: A Pilot Study. International Archives of Allergy and Immunology, 2018, 176, 8-14.	2.1	11
38	Predictors of Persistent Milk Allergy in Children: A Retrospective Cohort Study. International Archives of Allergy and Immunology, 2018, 175, 177-180.	2.1	30
39	Risk Factors and Clinical Features in Cashew Nut Oral Food Challenges. International Archives of Allergy and Immunology, 2018, 175, 99-106.	2.1	10
40	Oral Immunotherapy in Japanese Children with Anaphylactic Peanut Allergy. International Archives of Allergy and Immunology, 2018, 175, 181-188.	2.1	40
41	Increased ratio of pollock roe-specific IgE to salmon roe-specific IgE levels is associated with a positive reaction to cooked pollock roe oral food challenge. Allergology International, 2018, 67, 364-370.	3.3	10
42	Risk of Anaphylaxis during an Oral Food Challenge Increases with Increasing Specific IgE Levels. Journal of Allergy and Clinical Immunology, 2018, 141, AB151.	2.9	0
43	How to diagnose food allergy. Current Opinion in Allergy and Clinical Immunology, 2018, 18, 214-221.	2.3	28
44	Nationwide questionnaire-based survey of oral immunotherapy in Japan. Allergology International, 2018, 67, 399-404.	3.3	28
45	Skin prick test is more useful than specific IgE for diagnosis of buckwheat allergy: A retrospective cross-sectional study. Allergology International, 2018, 67, 67-71.	3.3	14
46	Followâ€up of patients with uncertain symptoms during an oral food challenge is useful for diagnosis. Pediatric Allergy and Immunology, 2018, 29, 66-71.	2.6	13
47	A three-level stepwise oral food challenge for egg, milk, and wheat allergy. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 658-660.e10.	3.8	40
48	Measurement of Exhaled Nitric Oxide in Children: A Comparison Between NObreath® and NIOX VERO® Analyzers. Allergy, Asthma and Immunology Research, 2018, 10, 478.	2.9	13
49	Predictive power of ovomucoid and egg white specific IgE in heated egg oral food challenges. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 2115-2117.e6.	3.8	18
50	Predictors of Persistent Wheat Allergy in Children: A Retrospective Cohort Study. International Archives of Allergy and Immunology, 2018, 176, 249-254.	2.1	35
51	Acquisition of tolerance to egg allergy in a child with repeated egg-induced acute pancreatitis. Allergology International, 2018, 67, 535-537.	3.3	3
52	Negative Act d 8 indicates systemic kiwifruit allergy among kiwifruitâ€sensitized children. Pediatric Allergy and Immunology, 2017, 28, 291-294.	2.6	6
53	Safety and feasibility of heated egg yolk challenge for children with egg allergies. Pediatric Allergy and Immunology, 2017, 28, 348-354.	2.6	23
54	Risk Factors for Severe Reactions during Double-Blind Placebo-Controlled Food Challenges. International Archives of Allergy and Immunology, 2017, 172, 173-182.	2.1	50

#	Article	IF	CITATIONS
55	Association study of childhood food allergy with genome-wide association studies–discovered loci of atopic dermatitis and eosinophilic esophagitis. Journal of Allergy and Clinical Immunology, 2017, 140, 1713-1716.	2.9	40
56	Wheat-Dependent Exercise-Induced Anaphylaxis. Current Treatment Options in Allergy, 2017, 4, 291-302.	2.2	3
57	Efficacy of Component Resolved Diagnosis in Walnut and Cashew Nut Allergies. Journal of Allergy and Clinical Immunology, 2017, 139, AB127.	2.9	0
58	Natural History of Hen's Egg Allergy from 6 to 12 Years of Age. Journal of Allergy and Clinical Immunology, 2017, 139, AB137.	2.9	0
59	Novel immunotherapy and treatment modality for severe food allergies. Current Opinion in Allergy and Clinical Immunology, 2017, 17, 212-219.	2.3	15
60	Clinical aspects of oral immunotherapy for the treatment of allergies. Seminars in Immunology, 2017, 30, 45-51.	5.6	17
61	Usefulness of antigen-specific IgE probability curves derived from the 3gAllergy assay in diagnosing egg, cow's milk, and wheat allergies. Allergology International, 2017, 66, 296-301.	3.3	18
62	Reactions of Buckwheat-Hypersensitive Patients during Oral Food Challenge Are Rare, but Often Anaphylactic. International Archives of Allergy and Immunology, 2017, 172, 116-122.	2.1	22
63	Jug r 1 sensitization is important in walnut-allergic children and youth. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 1784-1786.e1.	3.8	39
64	Commentary on Japanese Pediatric Guideline for Food Allergy 2016 Chapter 7 Oral Food Challenge Test. Nihon Shoni Arerugi Gakkaishi the Japanese Journal of Pediatric Allergy and Clinical Immunology, 2017, 31, 302-312.	0.2	0
65	Salmon roeâ€specific serum IgE predicts oral salmon roe food challenge test results. Pediatric Allergy and Immunology, 2016, 27, 324-327.	2.6	11
66	Periostin as a biomarker for the diagnosis of pediatric asthma. Pediatric Allergy and Immunology, 2016, 27, 521-526.	2.6	62
67	Safety and Efficacy of Low-Dose Oral Immunotherapy for Hen's Egg Allergy in Children. International Archives of Allergy and Immunology, 2016, 171, 265-268.	2.1	50
68	Comparisons of outcomes with food immunotherapy strategies: efficacy, dosing, adverse effects, and tolerance. Current Opinion in Allergy and Clinical Immunology, 2016, 16, 396-403.	2.3	6
69	Two patients with acute pancreatitis after undergoing oral food challenges. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 984-986.	3.8	9
70	Allergic reactions to milk appear sooner than reactions to hen's eggs: a retrospective study. World Allergy Organization Journal, 2016, 9, 12.	3.5	14
71	Natural history of immediate-type hen's egg allergy in Japanese children. Allergology International, 2016, 65, 153-157.	3.3	54
72	Provocation tests for the diagnosis of foodâ€dependent exerciseâ€induced anaphylaxis. Pediatric Allergy and Immunology, 2016, 27, 44-49.	2.6	49

#	Article	IF	CITATIONS
73	Heated egg yolk challenge predicts the natural course of hen's egg allergy: a retrospective study. World Allergy Organization Journal, 2016, 9, 31.	3.5	15
74	Better management of wheat allergy using a very low-dose food challenge: A retrospective study. Allergology International, 2016, 65, 82-87.	3.3	38
75	Clinical utility of recombinant allergen components in diagnosing buckwheat allergy. Journal of Allergy and Clinical Immunology: in Practice, 2016, 4, 322-323.e3.	3.8	21
76	New approach for food allergy management using low-dose oral food challenges and low-dose oral immunotherapies. Allergology International, 2016, 65, 135-140.	3.3	66
77	Mayonnaise challenge test in children who used to avoid hen's egg and became tolerant to one heated egg. Nihon Shoni Arerugi Gakkaishi the Japanese Journal of Pediatric Allergy and Clinical Immunology, 2016, 30, 562-566.	0.2	1
78	VI. Management of Food Allergy. The Journal of the Japanese Society of Internal Medicine, 2016, 105, 1966-1974.	0.0	0
79	Does Terminating the Avoidance of Cow's Milk Lead to Growth in Height?. International Archives of Allergy and Immunology, 2015, 168, 56-60.	2.1	13
80	A review of biomarkers for predicting clinical reactivity to foods with a focus on specific immunoglobulin E antibodies. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 250-258.	2.3	17
81	Butter Tolerance in Children Allergic to Cow's Milk. Allergy, Asthma and Immunology Research, 2015, 7, 186.	2.9	16
82	Do Longer Intervals between Challenges Reduce the Risk of Adverse Reactions in Oral Wheat Challenges?. PLoS ONE, 2015, 10, e0143717.	2.5	20
83	Budesonide inhalation suspension versus methylprednisolone for treatment of moderate bronchial asthma attacks. World Allergy Organization Journal, 2015, 8, 14.	3.5	5
84	Oral Immunotherapy and Potential Treatment. Chemical Immunology and Allergy, 2015, 101, 106-113.	1.7	3
85	A Single-Center, Case-Control Study of Low-Dose-Induction Oral Immunotherapy with Cow's Milk. International Archives of Allergy and Immunology, 2015, 168, 131-137.	2.1	59
86	Oral immunotherapy initiation for multi-nut allergy: A case report. Allergology International, 2015, 64, 192-193.	3.3	7
87	Better management of cow's milk allergy using a very low dose food challenge test: A retrospective study. Allergology International, 2015, 64, 272-276.	3.3	36
88	Wheat oral immunotherapy for wheat-induced anaphylaxis. Journal of Allergy and Clinical Immunology, 2015, 136, 1131-1133.e7.	2.9	81
89	Usefulness of periostin as a biomarker of pediatric asthma. , 2015, , .		1
90	Oral lactose challenge tests for cow's milk allergy. Nihon Shoni Arerugi Gakkaishi the Japanese Journal of Pediatric Allergy and Clinical Immunology, 2015, 29, 649-654.	0.2	5

#	Article	IF	CITATIONS
91	Study of methods of ingestion in oral food challenge tests. Nihon Shoni Arerugi Gakkaishi the Japanese Journal of Pediatric Allergy and Clinical Immunology, 2015, 29, 181-191.	0.2	4
92	Clinical Studies in Oral Allergen-Specific Immunotherapy: Differences among Allergens. International Archives of Allergy and Immunology, 2014, 164, 1-9.	2.1	46
93	The Skin Prick Test is Not Useful in the Diagnosis of the Immediate Type Food Allergy Tolerance Acquisition. Allergology International, 2014, 63, 205-210.	3.3	10
94	Evaluation of a portable manual for parents of children with food allergies that assesses the severity of allergic symptoms. Nihon Shoni Arerugi Gakkaishi the Japanese Journal of Pediatric Allergy and Clinical Immunology, 2014, 28, 201-210.	0.2	7
95	Debate: Do we need rush oral immunotherapy? Cons Nihon Shoni Arerugi Gakkaishi the Japanese Journal of Pediatric Allergy and Clinical Immunology, 2014, 28, 87-96.	0.2	1
96	Oral Immunotherapy At Fixed Low Dose for Mild to Moderate Hen's Egg Allergy. Journal of Allergy and Clinical Immunology, 2013, 131, AB84.	2.9	0
97	Effect Of Oral Anti-histamines On The Thresholds Of Hen'S Egg- And Cow'S Milk-induced Anaphylactic Patients. Journal of Allergy and Clinical Immunology, 2011, 127, AB147-AB147.	2.9	0
98	Basophil Activation Marker CD203c Is Useful in the Diagnosis of Hen's Egg and Cow's Milk Allergies in Children. International Archives of Allergy and Immunology, 2010, 152, 54-61.	2.1	60