Cao-Thang Dinh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2223080/publications.pdf

Version: 2024-02-01

96 papers 24,389 citations

62 h-index

18465

94 g-index

103 all docs

103
docs citations

103 times ranked

16527 citing authors

#	Article	IF	CITATIONS
1	Ga doping disrupts C-C coupling and promotes methane electroproduction on CuAl catalysts. Chem Catalysis, 2022, 2, 908-916.	2.9	24
2	N-Heterocyclic Carbene-Stabilized Hydrido Au ₂₄ Nanoclusters: Synthesis, Structure, and Electrocatalytic Reduction of CO ₂ . Journal of the American Chemical Society, 2022, 144, 9000-9006.	6.6	74
3	Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nature Communications, 2022, 13, .	5.8	81
4	Catalyst Regeneration via Chemical Oxidation Enables Long-Term Electrochemical Carbon Dioxide Reduction. Journal of the American Chemical Society, 2022, 144, 13254-13265.	6.6	30
5	Ethylene Electrosynthesis: A Comparative Techno-economic Analysis of Alkaline vs Membrane Electrode Assembly vs CO ₂ –CO–C ₂ H ₄ Tandems. ACS Energy Letters, 2021, 6, 997-1002.	8.8	129
6	Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 6482-6490.	6.6	204
7	CO ₂ electrolysis to multicarbon products in strong acid. Science, 2021, 372, 1074-1078.	6.0	541
8	Single Pass CO ₂ Conversion Exceeding 85% in the Electrosynthesis of Multicarbon Products via Local CO ₂ Regeneration. ACS Energy Letters, 2021, 6, 2952-2959.	8.8	155
9	Gold Adparticles on Silver Combine Low Overpotential and High Selectivity in Electrochemical CO ₂ Conversion. ACS Applied Energy Materials, 2021, 4, 7504-7512.	2.5	18
10	Toward efficient catalysts for electrochemical CO2 conversion to C2 products. Current Opinion in Electrochemistry, 2021, 30, 100807.	2.5	11
11	Electrochemical CO ₂ reduction to ethanol: from mechanistic understanding to catalyst design. Journal of Materials Chemistry A, 2021, 9, 12474-12494.	5.2	36
12	Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes?. Energy and Environmental Science, 2021, 14, 2535-2548.	15.6	162
13	Oxygen-tolerant electroproduction of C ₂ products from simulated flue gas. Energy and Environmental Science, 2020, 13, 554-561.	15.6	113
14	Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. Applied Energy, 2020, 261, 114305.	5.1	65
15	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nature Catalysis, 2020, 3, 98-106.	16.1	325
16	Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. Nature Catalysis, 2020, 3, 14-22.	16.1	120
17	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 2020, 3, 985-992.	16.1	390
18	Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chemical Society Reviews, 2020, 49, 7488-7504.	18.7	213

#	Article	IF	CITATIONS
19	Fundamentals of Electrochemical CO ₂ Reduction on Single-Metal-Atom Catalysts. ACS Catalysis, 2020, 10, 10068-10095.	5.5	161
20	CO ₂ Electroreduction to Methane at Production Rates Exceeding 100 mA/cm ² . ACS Sustainable Chemistry and Engineering, 2020, 8, 14668-14673.	3.2	41
21	Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nature Energy, 2020, 5, 478-486.	19.8	363
22	Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature, 2020, 581, 178-183.	13.7	807
23	Boosting chemical and fuel production. Nature Catalysis, 2020, 3, 474-475.	16.1	3
24	CO ₂ electrolysis to multicarbon products at activities greater than 1 A cm ^{â°'2} . Science, 2020, 367, 661-666.	6.0	860
25	Enhanced Nitrate-to-Ammonia Activity on Copper–Nickel Alloys via Tuning of Intermediate Adsorption. Journal of the American Chemical Society, 2020, 142, 5702-5708.	6.6	638
26	Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577, 509-513.	13.7	682
27	Hydrationâ€Effectâ€Promoting Ni–Fe Oxyhydroxide Catalysts for Neutral Water Oxidation. Advanced Materials, 2020, 32, e1906806.	11.1	62
28	Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nature Catalysis, 2020, 3, 75-82.	16.1	390
29	Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. Joule, 2019, 3, 1703-1718.	11.7	106
30	Designing materials for electrochemical carbon dioxide recycling. Nature Catalysis, 2019, 2, 648-658.	16.1	838
31	Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly. Joule, 2019, 3, 2777-2791.	11.7	350
32	CO ₂ Electroreduction from Carbonate Electrolyte. ACS Energy Letters, 2019, 4, 1427-1431.	8.8	141
33	Binding Site Diversity Promotes CO ₂ Electroreduction to Ethanol. Journal of the American Chemical Society, 2019, 141, 8584-8591.	6.6	338
34	Electrochemical CO ₂ Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials, 2019, 31, e1807166.	11.1	769
35	N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nature Chemistry, 2019, 11, 419-425.	6.6	333
36	Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nature Catalysis, 2019, 2, 251-258.	16.1	188

#	Article	IF	Citations
37	Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nature Communications, 2019, 10, 5814.	5.8	201
38	Efficient upgrading of CO to C3 fuel using asymmetric C-C coupling active sites. Nature Communications, 2019, 10, 5186.	5.8	127
39	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nature Catalysis, 2019, 2, 1124-1131.	16.1	214
40	Boosting the Single-Pass Conversion for Renewable Chemical Electrosynthesis. Joule, 2019, 3, 13-15.	11.7	51
41	Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 2019, 4, 107-114.	19.8	470
42	Efficient Electroreduction of CO2 in an Ultra-Slim Pressurized Electrolyzer. ECS Meeting Abstracts, 2019, , .	0.0	0
43	Carbon Dioxide Electroreduction to Multi-Carbon Products Using a Large-Scale Membrane Electrode Assembly. ECS Meeting Abstracts, 2019, , .	0.0	0
44	Stable, High-Rate CO2 Electroreduction to Multi-Carbon Products in a Membrane Electrode Assembly System. ECS Meeting Abstracts, 2019, , .	0.0	0
45	Hydronium-Induced Switching between CO ₂ Electroreduction Pathways. Journal of the American Chemical Society, 2018, 140, 3833-3837.	6.6	144
46	Chemicalâ€toâ€Electricity Carbon: Water Device. Advanced Materials, 2018, 30, e1707635.	11.1	45
47	Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nature Catalysis, 2018, 1, 103-110.	16.1	737
48	What Should We Make with CO2 and How Can We Make It?. Joule, 2018, 2, 825-832.	11.7	975
49	Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nature Chemistry, 2018, 10, 149-154.	6.6	476
50	A Surface Reconstruction Route to High Productivity and Selectivity in CO ₂ Electroreduction toward C ₂₊ Hydrocarbons. Advanced Materials, 2018, 30, e1804867.	11.1	200
51	Copper adparticle enabled selective electrosynthesis of n-propanol. Nature Communications, 2018, 9, 4614.	5.8	153
52	High Rate, Selective, and Stable Electroreduction of CO ₂ to CO in Basic and Neutral Media. ACS Energy Letters, 2018, 3, 2835-2840.	8.8	230
53	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nature Catalysis, 2018, 1, 946-951.	16.1	354
54	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nature Communications, 2018, 9, 3828.	5.8	279

#	Article	IF	Citations
55	CO ₂ electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science, 2018, 360, 783-787.	6.0	1,638
56	Metal–Organic Frameworks Mediate Cu Coordination for Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2018, 140, 11378-11386.	6.6	326
57	2D Metal Oxyhalideâ€Derived Catalysts for Efficient CO ₂ Electroreduction. Advanced Materials, 2018, 30, e1802858.	11.1	200
58	Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nature Catalysis, 2018, 1, 421-428.	16.1	537
59	Combined high alkalinity and pressurization enable efficient CO ₂ electroreduction to CO. Energy and Environmental Science, 2018, 11, 2531-2539.	15.6	214
60	Hollow Sr/Rh-codoped TiO ₂ photocatalyst for efficient sunlight-driven organic compound degradation. RSC Advances, 2017, 7, 3480-3487.	1.7	20
61	0D–2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation. Advanced Materials, 2017, 29, 1605646.	11.1	89
62	Enhanced Solarâ€toâ€Hydrogen Generation with Broadband Epsilonâ€Nearâ€Zero Nanostructured Photocatalysts. Advanced Materials, 2017, 29, 1701165.	11.1	39
63	Freestanding nano-photoelectrode as a highly efficient and visible-light-driven photocatalyst for water-splitting. Journal of Materials Chemistry A, 2017, 5, 10651-10657.	5 . 2	15
64	Nanomorphology-Enhanced Gas-Evolution Intensifies CO ₂ Reduction Electrochemistry. ACS Sustainable Chemistry and Engineering, 2017, 5, 4031-4040.	3.2	135
65	Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. Joule, 2017, 1, 794-805.	11.7	390
66	Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO ₂ reduction to C ₂ H ₄ . Green Chemistry, 2017, 19, 4023-4030.	4.6	58
67	Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO ₂ . Journal of the American Chemical Society, 2017, 139, 9359-9363.	6.6	260
68	Single-step colloidal quantum dot films for infrared solar harvesting. Applied Physics Letters, 2016, 109, .	1.5	52
69	Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537, 382-386.	13.7	1,429
70	High-Density Nanosharp Microstructures Enable Efficient CO ₂ Electroreduction. Nano Letters, 2016, 16, 7224-7228.	4.5	158
71	Photon management for augmented photosynthesis. Nature Communications, 2016, 7, 12699.	5.8	200
72	Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. ACS Catalysis, 2016, 6, 8115-8120.	5.5	277

#	Article	IF	CITATIONS
73	ZnFe ₂ O ₄ Leaves Grown on TiO ₂ Trees Enhance Photoelectrochemical Water Splitting. Small, 2016, 12, 3181-3188.	5.2	56
74	Homogeneously dispersed multimetal oxygen-evolving catalysts. Science, 2016, 352, 333-337.	6.0	1,948
75	Self-assembled nanoparticle-stabilized photocatalytic reactors. Nanoscale, 2016, 8, 2107-2115.	2.8	22
76	Spontaneous and Light-Driven Conversion of NO _{<i>x</i>} on Oxide-Modified TiO ₂ Surfaces. Industrial & Engineering Chemistry Research, 2015, 54, 12750-12756.	1.8	4
77	Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale, 2015, 7, 8187-8208.	2.8	418
78	Tailoring the assembly, interfaces, and porosity of nanostructures toward enhanced catalytic activity. Chemical Communications, 2015, 51, 624-635.	2.2	41
79	Frontispiece: Three-Dimensional Ordered Assembly of Thin-Shell Au/TiO2Hollow Nanospheres for Enhanced Visible-Light-Driven Photocatalysis. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	7.2	0
80	Threeâ€Dimensional Ordered Assembly of Thinâ€6hell Au/TiO ₂ Hollow Nanospheres for Enhanced Visibleâ€Lightâ€Driven Photocatalysis. Angewandte Chemie - International Edition, 2014, 53, 6618-6623.	7.2	202
81	Visible light induced hydrogen generation using a hollow photocatalyst with two cocatalysts separated on two surface sides. Physical Chemistry Chemical Physics, 2014, 16, 5937.	1.3	88
82	Design of multicomponent photocatalysts for hydrogen production under visible light using water-soluble titanate nanodisks. Nanoscale, 2014, 6, 4819-4829.	2.8	24
83	Controlled synthesis of ceria nanoparticles for the design of nanohybrids. Journal of Colloid and Interface Science, 2013, 394, 100-107.	5.0	23
84	Design of water-soluble CdS–titanate–nickel nanocomposites for photocatalytic hydrogen production under sunlight. Journal of Materials Chemistry A, 2013, 1, 13308.	5.2	71
85	Controlled Synthesis of Titanate Nanodisks as Versatile Building Blocks for the Design of Hybrid Nanostructures. Angewandte Chemie - International Edition, 2012, 51, 6608-6612.	7.2	28
86	Back Cover: Controlled Synthesis of Titanate Nanodisks as Versatile Building Blocks for the Design of Hybrid Nanostructures (Angew. Chem. Int. Ed. 27/2012). Angewandte Chemie - International Edition, 2012, 51, 6794-6794.	7.2	1
87	A solvothermal singleâ€step route towards shapeâ€controlled titanium dioxide nanocrystals. Canadian Journal of Chemical Engineering, 2012, 90, 8-17.	0.9	20
88	Biomolecule-assisted route for shape-controlled synthesis of single-crystalline MnWO ₄ nanoparticles and spontaneous assembly of polypeptide-stabilized mesocrystal microspheres. CrystEngComm, 2011, 13, 1450-1460.	1.3	62
89	A New Route to Size and Population Control of Silver Clusters on Colloidal TiO ₂ Nanocrystals. ACS Applied Materials & Interfaces, 2011, 3, 2228-2234.	4.0	49
90	Two-Phase Synthesis of Colloidal Annular-Shaped CexLa1â^xcO3OH Nanoarchitectures Assemblied from Small Particles and Their Thermal Conversion to Derived Mixed Oxides. Inorganic Chemistry, 2011, 50, 1309-1320.	1.9	37

#	Article	lF	CITATIONS
91	Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity. Chemical Communications, 2011, 47, 7797.	2.2	160
92	A general procedure to synthesize highly crystalline metal oxide and mixed oxide nanocrystals in aqueous medium and photocatalytic activity of metal/oxide nanohybrids. Nanoscale, 2011, 3, 1861.	2.8	54
93	Shape- and Size-Controlled Synthesis of Monoclinic ErOOH and Cubic Er ₂ O ₃ from Micro- to Nanostructures and Their Upconversion Luminescence. ACS Nano, 2010, 4, 2263-2273.	7. 3	76
94	Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals. ACS Nano, 2009, 3, 3737-3743.	7. 3	399
95	Monodisperse Samarium and Cerium Orthovanadate Nanocrystals and Metal Oxidation States on the Nanocrystal Surface. Langmuir, 2009, 25, 11142-11148.	1.6	71
96	A Novel Approach for Monodisperse Samarium Orthovanadate Nanocrystals: Controlled Synthesis and Characterization. Journal of Physical Chemistry C, 2009, 113, 18584-18595.	1.5	43