
Xiaosi Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2222956/publications.pdf Version: 2024-02-01

Χιλοςι Ζμοιι

#	Article	IF	CITATIONS
1	Anchoring ultrafine CoP and CoSb nanoparticles into rich N-doped carbon nanofibers for efficient potassium storage. Science China Materials, 2022, 65, 43-50.	6.3	18
2	Confining ultrafine SnS nanoparticles in hollow multichannel carbon nanofibers for boosting potassium storage properties. Science Bulletin, 2022, 67, 151-160.	9.0	75
3	Sn4P3 nanoparticles confined in multilayer graphene sheets as a high-performance anode material for potassium-ion batteries. Journal of Energy Chemistry, 2022, 66, 413-421.	12.9	64
4	Facile synthesis of KVPO4F/reduced graphene oxide hybrid as a high-performance cathode material for potassium-ion batteries. Journal of Energy Chemistry, 2022, 68, 284-292.	12.9	30
5	Self-templated construction of peanut-like P3-type K _{0.45} Mn _{0.5} Co _{0.5} O ₂ for highly reversible potassium storage. Journal of Materials Chemistry A, 2022, 10, 554-560.	10.3	23
6	Implantation of Fe7S8 nanocrystals into hollow carbon nanospheres for efficient potassium storage. Journal of Colloid and Interface Science, 2022, 615, 840-848.	9.4	15
7	A highly stable potassium-ion battery anode enabled by multilayer graphene sheets embedded with SnTe nanoparticles. Chemical Engineering Journal, 2022, 435, 135100.	12.7	29
8	Synthesis of multicore-shell FeS2@C nanocapsules for stable potassium-ion batteries. Journal of Energy Chemistry, 2022, 73, 126-132.	12.9	43
9	Core–Shell-Structured Carbon Nanotube@VS ₄ Nanonecklaces as a High-Performance Cathode Material for Magnesium-Ion Batteries. Journal of Physical Chemistry Letters, 2022, 13, 5726-5733.	4.6	21
10	Synthesis of KVPO ₄ F/Carbon Porous Single Crystalline Nanoplates for High-Rate Potassium-Ion Batteries. Nano Letters, 2022, 22, 4933-4940.	9.1	37
11	Coupling Co3[Co(CN)6]2 nanocubes with reduced graphene oxide for high-rate and long-cycle-life potassium storage. Journal of Energy Chemistry, 2021, 58, 593-601.	12.9	44
12	A general strategy for embedding ultrasmall CoM _x nanocrystals (M = S, O, Se, and Te) in hierarchical porous carbon nanofibers for high-performance potassium storage. Journal of Materials Chemistry A, 2021, 9, 1487-1494.	10.3	68
13	A high-performance cathode for potassium-ion batteries based on uniform P3-type K _{0.5} Mn _{0.8} Co _{0.1} Ni _{0.1} O ₂ porous microcuboids. Journal of Materials Chemistry A, 2021, 9, 22820-22826.	10.3	40
14	A novel valve-less piezoelectric micropump generating recirculating flow. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1473-1490.	3.1	1
15	Candied-Haws-like Architecture Consisting of FeS ₂ @C Core–Shell Particles for Efficient Potassium Storage. , 2021, 3, 356-363.		90
16	Recent Progress and Prospects of Layered Cathode Materials for Potassiumâ€ion Batteries. Energy and Environmental Materials, 2021, 4, 178-200.	12.8	43
17	Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries. Science China Chemistry, 2021, 64, 1267-1282.	8.2	99
18	<scp>Doubleâ€Coated Fe₂N</scp> @ <scp>TiO₂</scp> @C <scp>Yolkâ€Shell</scp> Submicrocubes as an Advanced Anode for <scp>Potassiumâ€Ion</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1878-1884.	4.9	15

#	Article	IF	CITATIONS
19	Anchoring Carbon-Coated CoSe Nanoparticles on Hollow Carbon Nanocapsules for Efficient Potassium Storage. ACS Applied Energy Materials, 2021, 4, 6356-6363.	5.1	11
20	Construction of CoS2 nanoparticles embedded in well-structured carbon nanocubes for high-performance potassium-ion half/full batteries. Science China Chemistry, 2021, 64, 1401-1409.	8.2	43
21	Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries. Journal of Energy Chemistry, 2021, 60, 241-248.	12.9	54
22	A Lowâ€Strain Phosphate Cathode for Highâ€Rate and Ultralong Cycleâ€Life Potassiumâ€Ion Batteries. Angewandte Chemie, 2021, 133, 25779-25786.	2.0	8
23	A Lowâ€Strain Phosphate Cathode for Highâ€Rate and Ultralong Cycleâ€Life Potassiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 25575-25582.	13.8	137
24	Core–Shell Structured Fe ₇ S ₈ @C Nanospheres as a High-Performance Anode Material for Potassium-Ion Batteries. Energy & Fuels, 2021, 35, 3490-3496.	5.1	19
25	Scalable synthesis of Na ₂ MVF ₇ (M = Mn, Fe, and Co) as high-performance cathode materials for sodium-ion batteries. Chemical Communications, 2021, 57, 11497-11500.	4.1	35
26	Nanostructured metal chalcogenides confined in hollow structures for promoting energy storage. Nanoscale Advances, 2020, 2, 583-604.	4.6	18
27	Uniform yolkâ~'shell Fe7S8@C nanoboxes as a general host material for the efficient storage of alkali metal ions. Journal of Alloys and Compounds, 2020, 817, 152732.	5.5	73
28	A Yolk–Shell‧tructured FePO ₄ Cathode for Highâ€Rate and Long ycling Sodiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 17657-17663.	2.0	191
29	Water Chestnut-Derived Slope-Dominated Carbon as a High-Performance Anode for High-Safety Potassium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11410-11417.	5.1	51
30	A Yolk–Shell‧tructured FePO ₄ Cathode for Highâ€Rate and Long ycling Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 17504-17510.	13.8	275
31	Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance. Journal of Colloid and Interface Science, 2020, 567, 84-91.	9.4	130
32	Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating Ultrafine Sb Nanocrystals within Nanochannel ontaining Carbon Nanofibers. Angewandte Chemie - International Edition, 2019, 58, 14578-14583.	13.8	332
33	Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating Ultrafine Sb Nanocrystals within Nanochannelâ€Containing Carbon Nanofibers. Angewandte Chemie, 2019, 131, 14720-14725.	2.0	53
34	Facile synthesis of SnSe2 nanoparticles supported on graphite nanosheets for improved sodium storage and hydrogen evolution. Journal of Power Sources, 2019, 436, 226860.	7.8	72
35	Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 788, 240-247.	5.5	90
36	Hierarchical Nanospheres Constructed by Ultrathin MoS ₂ Nanosheets Braced on Nitrogen-Doped Carbon Polyhedra for Efficient Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2019, 11, 2112-2119.	8.0	83

#	Article	IF	CITATIONS
37	Confining SnS2 Ultrathin Nanosheets in Hollow Carbon Nanostructures for Efficient Capacitive Sodium Storage. Joule, 2018, 2, 725-735.	24.0	324
38	Template-free synthesis of metal oxide hollow micro-/nanospheres <i>via</i> Ostwald ripening for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 10168-10175.	10.3	109
39	Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon, 2018, 127, 658-666.	10.3	294
40	Fabrication of Microporous Sulfur-Doped Carbon Microtubes for High-Performance Sodium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 6638-6645.	5.1	84
41	Novel nitrogen-doped reduced graphene oxide-bonded Sb nanoparticles for improvedÂsodium storage performance. Journal of Materials Chemistry A, 2018, 6, 11244-11251.	10.3	62
42	Construction of Amorphous FePO ₄ Nanosheets with Enhanced Sodium Storage Properties. ACS Applied Energy Materials, 2018, 1, 4395-4402.	5.1	29
43	An efficient sodium-ion battery consisting of reduced graphene oxide bonded Na3V2(PO4)3 in a composite carbon network. Journal of Alloys and Compounds, 2018, 767, 131-140.	5.5	86
44	Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5761-5769.	10.3	143
45	Chemical bonding between antimony and ionic liquid-derived nitrogen-doped carbon for sodium-ion battery anode. Journal of Power Sources, 2017, 349, 37-44.	7.8	85
46	A Few-Layer SnS2/Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage. Journal of Physical Chemistry C, 2017, 121, 3261-3269.	3.1	105
47	Uniformly-distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage. Journal of Materials Chemistry A, 2017, 5, 13411-13420.	10.3	79
48	Encapsulating Sn Nanoparticles in Amorphous Carbon Nanotubes for Enhanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1601177.	19.5	234
49	Formation of Uniform Nâ€doped Carbon oated SnO ₂ Submicroboxes with Enhanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1600451.	19.5	262
50	Nanowire-templated formation of SnO ₂ /carbon nanotubes with enhanced lithium storage properties. Nanoscale, 2016, 8, 8384-8389.	5.6	145
51	Enhancing the Anode Performance of Antimony through Nitrogen-Doped Carbon and Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 3214-3220.	3.1	61
52	Understanding the Effect of Different Polymeric Surfactants on Enhancing the Silicon/Reduced Graphene Oxide Anode Performance. Journal of Physical Chemistry C, 2015, 119, 5848-5854.	3.1	83
53	Co ₃ S ₄ porous nanosheets embedded in graphene sheets as high-performance anode materials for lithium and sodium storage. Journal of Materials Chemistry A, 2015, 3, 6787-6791.	10.3	247
54	Improving the Anode Performance of WS ₂ through a Self-Assembled Double Carbon Coating. Journal of Physical Chemistry C, 2015, 119, 15874-15881.	3.1	90

#	Article	IF	CITATIONS
55	Fluorine-Doped Carbon Particles Derived from Lotus Petioles as High-Performance Anode Materials for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2015, 119, 21336-21344.	3.1	158
56	A Chemically Coupled Antimony/Multilayer Graphene Hybrid as a High-Performance Anode for Sodium-Ion Batteries. Chemistry of Materials, 2015, 27, 8138-8145.	6.7	139
57	Strongly Bonded Selenium/Microporous Carbon Nanofibers Composite as a High-Performance Cathode for Lithium–Selenium Batteries. Journal of Physical Chemistry C, 2015, 119, 27316-27321.	3.1	77
58	Ge Nanoparticles Encapsulated in Nitrogen-Doped Reduced Graphene Oxide as an Advanced Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 28502-28508.	3.1	92
59	A selenium-confined microporous carbon cathode for ultrastable lithium–selenium batteries. Journal of Materials Chemistry A, 2014, 2, 17735-17739.	10.3	117
60	An SbO _{<i>x</i>} /Reduced Graphene Oxide Composite as a High-Rate Anode Material for Sodium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 23527-23534.	3.1	101
61	Ultralong Cycle Life Sodium-Ion Battery Anodes Using a Graphene-Templated Carbon Hybrid. Journal of Physical Chemistry C, 2014, 118, 22426-22431.	3.1	66
62	Highly Disordered Carbon as a Superior Anode Material for Roomâ€Temperature Sodiumâ€Ion Batteries. ChemElectroChem, 2014, 1, 83-86.	3.4	158
63	Ultraâ€Uniform SnO <i>_x</i> /Carbon Nanohybrids toward Advanced Lithiumâ€Ion Battery Anodes. Advanced Materials, 2014, 26, 3943-3949.	21.0	311
64	A PEO-assisted electrospun silicon–graphene composite as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9019.	10.3	69
65	Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage. Journal of Materials Chemistry A, 2013, 1, 13727.	10.3	188
66	Synthesis of MoS2 nanosheet–graphene nanosheet hybrid materials for stable lithium storage. Chemical Communications, 2013, 49, 1838.	4.1	293
67	Binding SnO ₂ Nanocrystals in Nitrogenâ€Doped Graphene Sheets as Anode Materials for Lithiumâ€lon Batteries. Advanced Materials, 2013, 25, 2152-2157.	21.0	1,089
68	Electrospun Silicon Nanoparticle/Porous Carbon Hybrid Nanofibers for Lithiumâ€ŀon Batteries. Small, 2013, 9, 2684-2688.	10.0	164
69	Tin Nanoparticles Impregnated in Nitrogen-Doped Graphene for Lithium-Ion Battery Anodes. Journal of Physical Chemistry C, 2013, 117, 25367-25373.	3.1	120
70	Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries. Chemical Communications, 2012, 48, 2198.	4.1	417
71	Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries. Nano Research, 2012, 5, 845-853.	10.4	117
72	Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale, 2012, 4, 5868.	5.6	240

#	Article	IF	CITATIONS
73	A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 17456.	6.7	129
74	Efficient 3D Conducting Networks Built by Graphene Sheets and Carbon Nanoparticles for High-Performance Silicon Anode. ACS Applied Materials & Interfaces, 2012, 4, 2824-2828.	8.0	135
75	Selfâ€Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through Electrostatic Attraction for Lithiumâ€lon Batteries. Advanced Energy Materials, 2012, 2, 1086-1090.	19.5	447
76	Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid. Chemical Communications, 2010, 46, 3663.	4.1	165
77	Dispersion of graphene sheets in ionic liquid [bmim][PF ₆] stabilized by an ionic liquid polymer. Chemical Communications, 2010, 46, 386-388.	4.1	169
78	Seeding Growth of Pd/Au Bimetallic Nanoparticles on Highly Cross-Linked Polymer Microspheres with Ionic Liquid and Solvent-Free Hydrogenation. Journal of Physical Chemistry C, 2010, 114, 3396-3400.	3.1	63
79	Shape controlled synthesis of palladium nanocrystals by combination of oleylamine and alkylammonium alkylcarbamate and their catalytic activity. Chemical Communications, 2010, 46, 8552.	4.1	46
80	Ru nanoparticles stabilized by poly(N-vinyl-2-pyrrolidone) grafted onto silica: Very active and stable catalysts for hydrogenation of aromatics. Journal of Molecular Catalysis A, 2009, 306, 143-148.	4.8	41
81	Cross-linked polymer coated Pd nanocatalysts on SiO2 support: very selective and stable catalysts for hydrogenation in supercritical CO2. Green Chemistry, 2009, 11, 798.	9.0	30
82	The dispersion of carbon nanotubes in water with the aid of very small amounts of ionic liquid. Chemical Communications, 2009, , 1897.	4.1	65
83	Aerobic oxidation of secondary alcohols to ketones catalyzed by cobalt(II)/ZnO in poly(ethylene) Tj ETQq1 1 0.78	4314 rgB1	r /Qyerlock

84 Switching the basicity of ionic liquids by CO2. Green Chemistry, 2008, 10, 1142.

9.0 93