Xiaosi Zhou

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2222956/publications.pdf
Version: 2024-02-01

6 Implantation of Fe7S8 nanocrystals into hollow carbon nanospheres for efficient potassium storage. Journal of Colloid and Interface Science, 2022, 615, 840-848.
$7 \quad$ A highly stable potassium-ion battery anode enabled by multilayer graphene sheets embedded with SnTenanoparticles. Chemical Engineering Journal, 2022, 435, 135100.
A high-performance cathode for potassium-ion batteries based on uniform P3-type
$\mathrm{K}<$ sub $>0.5</$ sub $>\mathrm{Mn}<$ sub $>0.8</$ sub $>\mathrm{Co}<$ sub $>0.1</$ sub $>\mathrm{Ni}<$ sub $>0.1</$ sub $>\mathrm{O}<$ sub $>2</$ sub $>$ porous
microcuboids. Journal of Materials Chemistry $\mathrm{A}, 2021,9,22820-22826$.

14 A novel valve-less piezoelectric micropump generating recirculating flow. Engineering Applications
3.1

1 of Computational Fluid Mechanics, 2021, 15, 1473-1490.
$3.1 \quad 1$

> Candied-Haws-like Architecture Consisting of FeS₂@C Coreâ€"Shell Particles for Efficient Potassium Storage., 2021, 3, 356-363.
5.1

11

Construction of CoS2 nanoparticles embedded in well-structured carbon nanocubes for
high-performance potassium-ion half/full batteries. Science China Chemistry, 2021, 64, 1401-1409.
8.2

43

Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material
for potassium-ion half/full batteries. Journal of Energy Chemistry, 2021, 60, 241-248.
$12.9 \quad 54$
54

A Lowâ€§train Phosphate Cathode for Highâ€Rate and Ultralong Cycleâ€Łife Potassiumâ€lon Batteries.
Angewandte Chemie, 2021, 133, 25779-25786.
$2.0 \quad 8$

A Lowâ€Strain Phosphate Cathode for Highâ€Rate and Ultralong Cycleâ€life Potassiumâ€łon Batteries.
$23 \quad \begin{aligned} & \text { A Lowâ€Strain Phosphate Cathode for Highâ€Rate and Ultralong Cycl } \\ & \text { Angewandte Chemie - International Edition, 2021, 60, 25575-25582. }\end{aligned}$
$13.8 \quad 137$

Coreâ€"Shell Structured Fe₇S₈@C Nanospheres as a High-Performance Anode
Material for Potassium-Ion Batteries. Energy \& Fuels, 2021, 35, 3490-3496.
5.1

19

$$
25 \quad \begin{aligned}
& \text { Scalable synthesis of } \mathrm{Na} \text { <sub }>2</ \text { sub }>\mathrm{MVF}\langle\text { sub }>7</ \text { sub }\rangle(M=M n, \mathrm{Fe} \text {, and } \mathrm{Co}) \text { as high-performance } \\
& \text { cathode materials for sodium-ion batteries. Chemical Communications, 2021, 57, 11497-11500. }
\end{aligned}
$$

$4.1 \quad 35$

26 Nanostructured metal chalcogenides confined in hollow structures for promoting energy storage.

Nanoscale Advances, 2020, 2, 583-604.

$$
\begin{aligned}
& \text { Uniform yolkâ^shell Fe7S8@C nanoboxes as a general host material for the efficient storage of alkali } \\
& \text { metal ions. Journal of Alloys and Compounds, 2020, 817, 152732. }
\end{aligned}
$$

28 A Yolkâ€"Shellâ€ $£$ tructured FePO₄ Cathode for Highâ€Rate and Longâ€€ycling Sodiumâ€łon
Batteries. Angewandte Chemie, 2020, 132, 17657-17663.
29 Water Chestnut-Derived Slope-Dominated Carbon as a High-Performance Anode for High-Safety
Potassium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11410-11417. 2
51A Yolkâ€"Shellâ€Structured FePO₄ Cathode for Highâ€Rate and Longâ€€ycling Sodiumâ€łon13.8275
Batteries. Angewandte Chemie - International Edition, 2020, 59, 17504-17510.
31 Fabrication of porous $\mathrm{Na} 3 \mathrm{~V} 2(\mathrm{PO} 4) 3 /$ reduced graphene oxide hollow spheres with enhanced sodium
storage performance. Journal of Colloid and Interface Science, 2020, 567, 84-91.9.4130
Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating
Ultrafine Sb Nanocrystals within Nanochannelâ€Containing Carbon Nanofibers. Angewandte Chemie -13.8332International Edition, 2019, 58, 14578-14583.
Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating
33 Ultrafine Sb Nanocrystals within Nanochannelâ€Containing Carbon Nanofibers. Angewandte Chemie, 2.0 53
2019, 131, 14720-14725.Facile synthesis of SnSe 2 nanoparticles supported on graphite nanosheets for improved sodium

Confining SnS2 Ultrathin Nanosheets in Hollow Carbon Nanostructures for Efficient Capacitive
37 Sodium Storage. Joule, 2018, 2, 725-735.

Template-free synthesis of metal oxide hollow micro-/nanospheres <i>via<i> Ostwald ripening for lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 10168-10175.
10.3

Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries.
$39 \quad \begin{aligned} & \text { Rice husk-derived hard carbons } \\ & \text { Carbon, 2018, 127, 658-666. }\end{aligned}$
10.3

294

Fabrication of Microporous Sulfur-Doped Carbon Microtubes for High-Performance Sodium-Ion
Batteries. ACS Applied Energy Materials, 2018, 1, 6638-6645.
5.184

Novel nitrogen-doped reduced graphene oxide-bonded Sb nanoparticles for improvedÂsodium storage
10.3
performance. Journal of Materials Chemistry A, 2018, 6, 11244-11251.

Construction of Amorphous FePO₄ Nanosheets with Enhanced Sodium Storage
Properties. ACS Applied Energy Materials, 2018, 1, 4395-4402.

An efficient sodium-ion battery consisting of reduced graphene oxide bonded $\mathrm{Na} 3 \mathrm{~V} 2(\mathrm{PO} 4) 3$ in a
43 composite carbon network. Journal of Alloys and Compounds, 2018, 767, 131-140.
5.5

86

Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. Journal of Materials
Chemistry A, 2017, 5, 5761-5769.
10.3

143

$45 \quad$| Chemical bonding between antimony and ionic liquid-derived nitrogen-doped carbon for sodium-ion |
| :--- |
| battery anode. Journal of Power Sources, 2017, 349, 37-44. |

battery anode. Journal of Power Sources, 2017, 349, 37-44.

A Few-Layer SnS2/Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage. Journal of
46 Physical Chemistry C, 2017, 121, 3261-3269.
3.1

105

47	Uniformly-distributed Sb nanoparticles in ionic liquid-derived nitrogen-enriched carbon for highly reversible sodium storage. Journal of Materials Chemistry A, 2017, 5, 13411-13420.	10.3	79
48	Encapsulating Sn Nanoparticles in Amorphous Carbon Nanotubes for Enhanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1601177.	19.5	234
49	Formation of Uniform Nâ€doped Carbonâ€Coated $\mathrm{SnO}\langle$ sub $>2<\|$ sub $>$ Submicroboxes with Enhanced Lithium Storage Properties. Advanced Energy Materials, 2016, 6, 1600451.	19.5	262

50 Nanowire-templated formation of $\mathrm{SnO}\langle$ sub $\rangle 2\langle/$ sub>/carbon nanotubes with enhanced lithium storage properties. Nanoscale, 2016, 8, 8384-8389.
5.6

145

Enhancing the Anode Performance of Antimony through Nitrogen-Doped Carbon and Carbon
Nanotubes. Journal of Physical Chemistry C, 2016, 120, 3214-3220.

Understanding the Effect of Different Polymeric Surfactants on Enhancing the Silicon/Reduced Graphene Oxide Anode Performance. Journal of Physical Chemistry C, 2015, 119, 5848-5854.
3.1

83

Co<sub> $3<\mid$ sub $>S<$ sub> $>4 /$ sub > porous nanosheets embedded in graphene sheets as high-performance
anode materials for lithium and sodium storage. Journal of Materials Chemistry A, 2015, 3, 6787-6791.
10.3

247
Ultralong Cycle Life Sodium-lon Battery Anodes Using a Graphene-Templated Carbon Hybrid. Journal of
Physical Chemistry C, 2014, 118, 22426-22431.

63	Ultraâ€Uniform SnO <i>_x<\|i>/Carbon Nanohybrids toward Advanced Lithiumâ€łon Battery Anodes. Advanced Materials, 2014, 26, 3943-3949.	21.0	311
64	A PEO-assisted electrospun siliconâ€"graphene composite as an anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 9019.	10.3	69
65	Wet milled synthesis of an Sb/MWCNT nanocomposite for improved sodium storage. Journal of Materials Chemistry A, 2013, 1, 13727.	10.3	188
66	Synthesis of MoS2 nanosheetâ€"graphene nanosheet hybrid materials for stable lithium storage. Chemical Communications, 2013, 49, 1838.	4.1	293
67	Binding SnO ₂ Nanocrystals in Nitrogenâ€Doped Graphene Sheets as Anode Materials for Lithiumâ€łon Batteries. Advanced Materials, 2013, 25, 2152-2157.	21.0	1,089

68 Electrospun Silicon Nanoparticle/Porous Carbon Hybrid Nanofibers for Lithiumâ€łon Batteries. Small,

Efficient 3D Conducting Networks Built by Graphene Sheets and Carbon Nanoparticles for High-Performance Silicon Anode. ACS Applied Materials \& Interfaces, 2012, 4, 2824-2828.
Selfâ€Assembled Nanocomposite of Silicon Nanoparticles Encapsulated in Graphene through
Electrostatic Attraction for Lithiumâ€lon Batteries. Advanced Energy Materials, 2012, 2, 1086-10
76 Synthesis of graphene/polyaniline composite nanosheets mediated by polymerized ionic liquid.
Chemical Communications, 2010, 46, 3663.
Dispersion of graphene sheets in ionic liquid [bmim] [PF₆] stabilized by an ionic liquid
polymer. Chemical Communications, 2010, 46, 386-388.

Seeding Growth of Pd/Au Bimetallic Nanoparticles on Highly Cross-Linked Polymer Microspheres with Ionic Liquid and Solvent-Free Hydrogenation. Journal of Physical Chemistry C, 2010, 114, 3396-3400.

Shape controlled synthesis of palladium nanocrystals by combination of oleylamine and
alkylammonium alkylcarbamate and their catalytic activity. Chemical Communications, 2010, 46, 8552.

Ru nanoparticles stabilized by poly(N-vinyl-2-pyrrolidone) grafted onto silica: Very active and stable catalysts for hydrogenation of aromatics. Journal of Molecular Catalysis A, 2009, 306, 143-148.

The dispersion of carbon nanotubes in water with the aid of very small amounts of ionic liquid.
Chemical Communications, 2009, , 1897.
83 Aerobic oxidation of secondary alcohols to ketones catalyzed by cobalt(II)/ZnO in poly(ethylene) Tj ETQq1 $10.784314 \mathrm{rgBT} / \mathrm{Zyerlock}$

