
Christiane Gebhardt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2222354/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A PCR–based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 1996, 14, 421-429.	21.4	501
2	ORGANIZATION OFGENESCONTROLLINGDISEASERESISTANCE IN THEPOTATOGENOME. Annual Review of Phytopathology, 2001, 39, 79-102.	7.8	412
3	The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant Journal, 2002, 30, 361-371.	5.7	381
4	Molecular cloning of the potatoGro1-4gene conferring resistance to pathotype Ro1 of the root cyst nematodeGlobodera rostochiensis, based on a candidate gene approach. Plant Journal, 2004, 38, 285-297.	5.7	211
5	Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Molecular Breeding, 2004, 13, 93-102.	2.1	202
6	A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Molecular Genetics and Genomics, 1995, 249, 74-81.	2.4	198
7	RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Molecular Genetics and Genomics, 1991, 227, 81-85.	2.4	167
8	Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostocbiensis. Molecular Genetics and Genomics, 1990, 224, 177-182.	2.4	150
9	Title is missing!. Molecular Breeding, 1999, 5, 399-415.	2.1	141
10	TheR1 gene conferring race-specific resistance toPhytophthora infestans in potato is located on potato chromosome V. Molecular Genetics and Genomics, 1992, 233, 278-283.	2.4	129
11	The Ry-fsto gene from Solanum stoloniferum for extreme resistant to Potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Molecular Breeding, 2005, 15, 95-101.	2.1	128
12	Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theoretical and Applied Genetics, 2008, 116, 1167-1181.	3.6	121
13	Cold Sweetening in Diploid Potato: Mapping Quantitative Trait Loci and Candidate Genes. Genetics, 2002, 162, 1423-1434.	2.9	117
14	Marker enrichment and high-resolution map of the segment of potato chromosome VII harbouring the nematode resistance gene Gro1. Molecular Genetics and Genomics, 1995, 249, 82-90.	2.4	109
15	DNA Variation at the Invertase Locus invGE/GF Is Associated With Tuber Quality Traits in Populations of Potato Breeding Clones. Genetics, 2005, 170, 813-821.	2.9	84
16	Tagging Quantitative Trait Loci for Maturity-Corrected Late Blight Resistance in Tetraploid Potato with PCR-Based Candidate Gene Markers. Molecular Plant-Microbe Interactions, 2004, 17, 1126-1138.	2.6	83
17	The historical role of species from the Solanaceae plant family in genetic research. Theoretical and Applied Genetics, 2016, 129, 2281-2294.	3.6	79
18	Single Nucleotide Polymorphisms in the Allene Oxide Synthase 2 Gene Are Associated With Field Resistance to Late Blight in Populations of Tetraploid Potato Cultivars. Genetics, 2009, 181, 1115-1127.	2.9	77

#	Article	IF	CITATIONS
19	Development of PCR assays diagnostic for RFLP marker alleles closely linked to allelesGro1 andH1, conferring resistance to the root cyst nematodeGlobodera rostochiensis in potato. Molecular Breeding, 1995, 1, 65-78.	2.1	76
20	Isolation of biochemical mutants using haploid mesophyll protoplasts of Hyoscyamus muticus. Planta, 1981, 153, 81-89.	3.2	73
21	Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. Plant Journal, 2003, 34, 529-541.	5.7	73
22	Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality. Theoretical and Applied Genetics, 2013, 126, 1039-1052.	3.6	70
23	First-generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnology Journal, 2003, 1, 399-410.	8.3	63
24	Bridging the gap between genome analysis and precision breeding in potato. Trends in Genetics, 2013, 29, 248-256.	6.7	63
25	Single nucleotide polymorphism (SNP) genotyping as basis for developing a PCR-based marker highly diagnostic for potato varieties with high resistance to Globodera pallida pathotype Pa2/3. Molecular Breeding, 2006, 18, 301-312.	2.1	58
26	A Major Quantitative Trait Locus for Resistance to Potato leafroll virus Is Located in a Resistance Hotspot on Potato Chromosome XI and Is Tightly Linked to N-Gene-Like Markers. Molecular Plant-Microbe Interactions, 2001, 14, 1420-1425.	2.6	55
27	Population structure and linkage disequilibrium in diploid and tetraploid potato revealed by genomeâ€wide highâ€density genotyping using the <scp>SolCAP SNP</scp> array. Plant Breeding, 2013, 132, 718-724.	1.9	55
28	The Transcriptome of Compatible and Incompatible Interactions of Potato (Solanum tuberosum) with Phytophthora infestans Revealed by DeepSAGE Analysis. PLoS ONE, 2012, 7, e31526.	2.5	54
29	SNPs in Genes Functional in Starch-Sugar Interconversion Associate with Natural Variation of Tuber Starch and Sugar Content of Potato (<i>Solanum tuberosum</i> L.). G3: Genes, Genomes, Genetics, 2014, 4, 1797-1811.	1.8	53
30	Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biology, 2010, 10, 271.	3.6	52
31	Association genetics in Solanum tuberosum provides new insights into potato tuber bruising and enzymatic tissue discoloration. BMC Genomics, 2011, 12, 7.	2.8	52
32	Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLoS ONE, 2016, 11, e0156254.	2.5	51
33	Natural variation of potato allene oxide synthase 2 causes differential levels of jasmonates and pathogen resistance in Arabidopsis. Planta, 2008, 228, 293-306.	3.2	48
34	Novel candidate genes influencing natural variation in potato tuber cold sweetening identified by comparative proteomics and association mapping. BMC Plant Biology, 2013, 13, 113.	3.6	47
35	Managing potato wart: a review of present research status and future perspective. Theoretical and Applied Genetics, 2014, 127, 763-780.	3.6	47
36	Cytoplasmic genome types of European potatoes and their effects on complex agronomic traits. BMC Plant Biology, 2015, 15, 162.	3.6	47

CHRISTIANE GEBHARDT

#	Article	IF	CITATIONS
37	Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato. Theoretical and Applied Genetics, 2010, 121, 1303-1310.	3.6	46
38	Discrimination among 136 Tetraploid Potato Varieties by Fingerprints Using Highly Polymorphic DNA Markers. Crop Science, 1992, 32, 815-819.	1.8	42
39	Comparative transcript profiling by SuperSAGE identifies novel candidate genes for controlling potato quantitative resistance to late blight not compromised by late maturity. Frontiers in Plant Science, 2013, 4, 423.	3.6	39
40	Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments. BMC Genomics, 2007, 8, 112.	2.8	38
41	Genotype-dependent expression of specific members of potato protease inhibitor gene families in different tissues and in response to wounding and nematode infection. Journal of Plant Physiology, 2009, 166, 762-774.	3.5	35
42	Multiple alleles for resistance and susceptibility modulate the defense response in the interaction of tetraploid potato (Solanum tuberosum) with Synchytrium endobioticum pathotypes 1, 2, 6 and 18. Theoretical and Applied Genetics, 2011, 123, 1281-1292.	3.6	35
43	PoMaMo–a comprehensive database for potato genome data. Nucleic Acids Research, 2004, 33, D666-D670.	14.5	34
44	Potato Homologs of Arabidopsis thaliana Genes Functional in Defense Signaling—Identification, Genetic Mapping, and Molecular Cloning. Molecular Plant-Microbe Interactions, 2005, 18, 1107-1119.	2.6	34
45	Members of the Kunitz-type protease inhibitor gene family of potato inhibit soluble tuber invertase in vitro. Potato Research, 2002, 45, 163-176.	2.7	32
46	Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V. Theoretical and Applied Genetics, 2009, 118, 619-629.	3.6	32
47	Analysis of Natural Variation of the Potato Tuber Proteome Reveals Novel Candidate Genes for Tuber Bruising. Journal of Proteome Research, 2012, 11, 703-716.	3.7	30
48	Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3ÂK SolCAP SNP array. BMC Genomics, 2017, 18, 642.	2.8	29
49	Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors. Molecular Genetics and Genomics, 2015, 290, 387-398.	2.1	27
50	Physical organization of mixed protease inhibitor gene clusters, coordinated expression and association with resistance to late blight at the <i>StKI</i> locus on potato chromosome III. Plant, Cell and Environment, 2010, 33, 2149-2161.	5.7	26
51	Identification of Novel Associations of Candidate Genes with Resistance to Late Blight in Solanum tuberosum Group Phureja. Frontiers in Plant Science, 2017, 8, 1040.	3.6	26
52	Genetic Diversity and Population Structure in Diploid Potatoes of <i>Solanum tuberosum</i> Group Phureja. Crop Science, 2015, 55, 760-769.	1.8	24
53	Genomic architecture of potato resistance to Synchytrium endobioticum disentangled using SSR markers and the 8.3k SolCAP SNP genotyping array. BMC Genetics, 2015, 16, 38.	2.7	24
54	Selection and validation of potato candidate genes for maturity corrected resistance to Phytophthora infestans based on differential expression combined with SNP association and linkage mapping. Frontiers in Genetics, 2015, 6, 294.	2.3	20

#	Article	IF	CITATIONS
55	Resistance to Potato virus Y in Potato. , 2017, , 207-241.		19
56	Novel SNP markers in InvGE and SssI genes are associated with natural variation of sugar contents and frying color in Solanum tuberosum Group Phureja. BMC Genetics, 2017, 18, 23.	2.7	15
57	Molecular Markers, Maps and Population Genetics. , 2007, , 77-89.		14
58	Tapping natural variation at functional level reveals allele specific molecular characteristics of potato invertase <i>Painâ€l </i> . Plant, Cell and Environment, 2012, 35, 2143-2154.	5.7	7
59	Dissection of Potato Complex Traits by Linkage and Association Genetics as Basis for Developing Molecular Diagnostics in Breeding Programs. , 2014, , 47-85.		7
60	Oxylipins are not required for R gene-mediated resistance in potato. European Journal of Plant Pathology, 2010, 127, 437-442.	1.7	5