Ana MarÃ-a Costero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2222194/publications.pdf

Version: 2024-02-01

101543 114465 5,128 182 36 citations h-index papers

g-index 188 188 188 5531 docs citations times ranked citing authors all docs

63

#	Article	IF	CITATIONS
1	Optical chemosensors and reagents to detect explosives. Chemical Society Reviews, 2012, 41, 1261-1296.	38.1	1,019
2	A new selective fluorogenic probe for trivalent cations. Chemical Communications, 2012, 48, 3000.	4.1	246
3	Chromogenic and fluorogenic reagents for chemical warfare nerve agents' detection. Chemical Communications, 2007, , 4839.	4.1	189
4	Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2012, 51, 10556-10560.	13.8	122
5	Chromogenic detection of nerve agent mimics. Chemical Communications, 2008, , 6002.	4.1	98
6	Chromogenic, Specific Detection of the Nerveâ€Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 2011, 17, 6931-6934.	3.3	89
7	Microwaveâ€Assisted Synthesis of Covalent Organic Frameworks: A Review. ChemSusChem, 2021, 14, 208-233.	6.8	80
8	Highly Selective Detection of Nerveâ€Agent Simulants with BODIPY Dyes. Chemistry - A European Journal, 2014, 20, 6339-6347.	3.3	79
9	Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14318-14322.	8.0	70
10	Surfactant-assisted chromogenic sensing of cyanide in water. New Journal of Chemistry, 2009, 33, 1641.	2.8	64
11	Biphenyl macrolactams in anion complexation. Selective naked-eye fluoride recognition. Tetrahedron, 2004, 60, 9471-9478.	1.9	61
12	A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 2011, 17, 11994-11997.	3.3	61
13	Selective and sensitive chromogenic detection of cyanide and HCN in solution and in gas phase. Chemical Communications, 2013, 49, 5669.	4.1	60
14	Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates. Tetrahedron: Asymmetry, 2005, 16, 2673-2679.	1.8	56
15	Chromo-fluorogenic BODIPY-complexes for selective detection of V-type nerve agent surrogates. Chemical Communications, 2014, 50, 13289-13291.	4.1	54
16	Discrimination of nerve gases mimics and other organophosphorous derivatives in gas phase using a colorimetric probe array. Chemical Communications, 2012, 48, 10105.	4.1	51
17	Chromoâ€Fluorogenic Detection of Nerveâ€Agent Mimics Using Triggered Cyclization Reactions in Push–Pull Dyes. Chemistry - an Asian Journal, 2010, 5, 1573-1585.	3.3	49
18	Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials. Journal of Materials Chemistry A, 2013, 1, 3561.	10.3	48

#	Article	IF	Citations
19	A Rapid and Sensitive Stripâ€Based Quick Test for Nerve Agents Tabun, Sarin, and Soman Using BODIPYâ€Modified Silica Materials. Chemistry - A European Journal, 2016, 22, 11138-11142.	3.3	48
20	A new phenanthrene-based bis-oxime chemosensor for Fe(III) and Cr(III) discrimination. Tetrahedron, 2012, 68, 4882-4887.	1.9	46
21	Selective and sensitive colorimetric detection of the neurotransmitter serotonin based on the aggregation of bifunctionalised gold nanoparticles. Sensors and Actuators B: Chemical, 2018, 258, 829-835.	7.8	46
22	Halogen-containing BODIPY derivatives for photodynamic therapy. Dyes and Pigments, 2019, 160, 198-207.	3.7	46
23	Chromogenic Detection of Nerve Agent Mimics by Mass Transport Control at the Surface of Bifunctionalized Silica Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 5945-5948.	13.8	45
24	Fluorescent sensing of maleate versus fumarate by a neutral cyclohexane based thiourea receptor. Chemical Communications, 2006, , 761.	4.1	44
25	Hg2+ and Cu2+ selective detection using a dual channel receptor based on thiopyrylium scaffoldings. Tetrahedron Letters, 2009, 50, 3885-3888.	1.4	44
26	Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 2012, 28, 14766-14776.	3.5	43
27	Recent Progress of Microwave-Assisted Synthesis of Silica Materials. Nanomaterials, 2020, 10, 1092.	4.1	42
28	Allosteric cooperativity and transport: studies in a circulating system. Journal of the American Chemical Society, 1988, 110, 7140-7143.	13.7	41
29	Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 2011, 47, 8313.	4.1	40
30	Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 2012, 4, 7237.	5 . 6	39
31	Enzymeâ€Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 2013, 19, 1346-1356.	3.3	39
32	Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 2018, 281, 58-69.	9.9	39
33	Conformationally regulated fluorescent sensors. Study of the selectivity in Zn 2+ versus Cd 2+ sensing. Tetrahedron, 2004, 60, 6327-6334.	1.9	38
34	Selective Detection of Nerve Agent Simulants by Using Triarylmethanolâ€Based Chromogenic Chemodosimeters. European Journal of Organic Chemistry, 2012, 2012, 4937-4946.	2.4	38
35	Selective chromo-fluorogenic detection of DFP (a Sarin and Soman mimic) and DCNP (a Tabun mimic) with a unique probe based on a boron dipyrromethene (BODIPY) dye. Organic and Biomolecular Chemistry, 2014, 12, 8745-8751.	2.8	38
36	Highly Selective Fluorescence Detection of Hydrogen Sulfide by Using an Anthraceneâ€Functionalized Cyclam–Cu ^{II} Complex. European Journal of Inorganic Chemistry, 2014, 2014, 41-45.	2.0	37

#	Article	IF	Citations
37	4,4′-Bis(dimethylamino)biphenyl containing binding sites. A new fluorescent subunit for cation sensing. Dalton Transactions RSC, 2002, , 1769-1775.	2.3	36
38	Determination of the chemical warfare agents Sarin, Soman and Tabun in natural waters employing fluorescent hybrid silica materials. Sensors and Actuators B: Chemical, 2017, 246, 1056-1065.	7.8	35
39	A Colorimetric Probe for the Selective Detection of Norepinephrine Based on a Double Molecular Recognition with Functionalized Gold Nanoparticles. ACS Applied Nano Materials, 2019, 2, 1367-1373.	5.0	35
40	Pericyclic reactions of free cyclopentadienone. Journal of the American Chemical Society, 1981, 103, 1797-1798.	13.7	34
41	BODIPY dyes functionalized with 2-(2-dimethylaminophenyl)ethanol moieties as selective OFF–ON fluorescent chemodosimeters for the nerve agent mimics DCNP and DFP. RSC Advances, 2014, 4, 15975-15982.	3.6	34
42	Neutral 1,3â€Diindolylureas for Nerve Agent Remediation. Chemistry - A European Journal, 2013, 19, 1586-1590.	3.3	33
43	Off–on BODIPY-based chemosensors for selective detection of Al ³⁺ and Cr ³⁺ versus Fe ³⁺ in aqueous media. RSC Advances, 2014, 4, 8962-8965.	3.6	33
44	Convergent functional groups: catalysis of hemiacetal cleavage in a synthetic molecular cleft. Journal of the American Chemical Society, 1988, 110, 983-984.	13.7	32
45	Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 2017, 248, 60-70.	9.9	31
46	Molecular recognition: Watson-Crick, Hoogsteen, and bifurcated hydrogen bonding in a model for adenine recognition. Journal of the American Chemical Society, 1987, 109, 6866-6867.	13.7	29
47	Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European Journal of Organic Chemistry, 2013, 2013, 4770-4779.	2.4	29
48	Multi-channel receptors based on thiopyrylium functionalised with macrocyclic receptors for the recognition of transition metal cations and anions. Dalton Transactions, 2010, 39, 3449.	3.3	28
49	Nerve agent simulant detection by using chromogenic triaryl methane cation probes. Tetrahedron, 2012, 68, 8612-8616.	1.9	28
50	A Chromogenic Probe for the Selective Recognition of Sarin and Soman Mimic DFP. ChemistryOpen, 2014, 3, 142-145.	1.9	28
51	Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry. Chemical Communications, 2015, 51, 3077-3079.	4.1	27
52	Convergent functional groups. 5. Ternary complexes in the molecular recognition of .betaarylethylamines. Journal of the American Chemical Society, 1988, 110, 923-927.	13.7	26
53	Ratiometric double channel borondipyrromethene based chemodosimeter for the selective detection of nerve agent mimics. Dyes and Pigments, 2014, 108, 76-83.	3.7	26
54	Synthesis of a New Allosteric Carrier Containing Three Conformationally Related Subunits. Journal of Organic Chemistry, 1994, 59, 2939-2944.	3.2	25

#	Article	IF	CITATIONS
55	Chiral cyclohexane based fluorescent chemosensors for enantiomeric discrimination of aspartate. Tetrahedron, 2008, 64, 3217-3224.	1.9	25
56	Boolean operations mediated by an ion-pair receptor of a multi-readout molecular logic gate. Chemical Communications, 2013, 49, 11056.	4.1	25
57	Binding and Fluorescent Sensing of Dicarboxylates by a Bis(calix[4]pyrrole)â€Substituted BODIPY Dye. European Journal of Organic Chemistry, 2013, 2013, 1515-1520.	2.4	25
58	Selective chromo-fluorogenic detection of trivalent cations in aqueous environments using a dehydration reaction. New Journal of Chemistry, 2016, 40, 9042-9045.	2.8	25
59	A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions. Molecules, 2018, 23, 2646.	3.8	25
60	Colorimetric detection of normetanephrine, a pheochromocytoma biomarker, using bifunctionalised gold nanoparticles. Analytica Chimica Acta, 2019, 1056, 146-152.	5.4	25
61	Influence of negative allosteric cooperativity in cation transport Tetrahedron Letters, 1992, 33, 623-626.	1.4	24
62	Poly(amine) biphenyl derivatives as fluorescent sensors for anions and cations. Journal of Materials Chemistry, 2005, 15, 2848.	6.7	24
63	Reactivity of free cyclopentadienone in cycloaddition reactions. Journal of the American Chemical Society, 1984, 106, 2077-2080.	13.7	23
64	Arynic species; effect of substituents on the reactivity of monosubstituted dehydrobenzenes. Tetrahedron, 1986, 42, 155-166.	1.9	23
65	2-Aza-2,4-cyclopentadienone. Existence and reactivity. Journal of the American Chemical Society, 1988, 110, 4017-4018.	13.7	23
66	Bis-cyclohexyl-crown-ethers as allosteric carriers. Tetrahedron, 1992, 48, 6265-6272.	1.9	23
67	Bis(crown ethers) derived from biphenyl: extraction and electrochemical properties. Tetrahedron, 2004, 60, 4683-4691.	1.9	23
68	N-Biphenyl thioureas as carboxylate receptors. Effect of the ligand substituents on the geometry of the complexes. Tetrahedron, 2006, 62, 8571-8577.	1.9	22
69	Detection and discrimination of organophosphorus pesticides in water by using a colorimetric probe array. Sensors and Actuators B: Chemical, 2014, 202, 727-731.	7.8	22
70	Azide and sulfonylazide functionalized fluorophores for the selective and sensitive detection of hydrogen sulfide. Sensors and Actuators B: Chemical, 2015, 207, 987-994.	7.8	21
71	A new chromo-fluorogenic probe based on BODIPY for NO2 detection in air. Chemical Communications, 2015, 51, 1725-1727.	4.1	21
72	Reactive annulenones: a comparative study. Journal of Organic Chemistry, 1990, 55, 2060-2063.	3.2	20

#	Article	IF	Citations
73	Acetylcholinesterase-Capped Mesoporous Silica Nanoparticles That Open in the Presence of Diisopropylfluorophosphate (a Sarin or Soman Simulant). Organic Letters, 2016, 18, 5548-5551.	4.6	20
74	Mesoporous Silica Nanoparticles in Chemical Detection: From Small Species to Large Bio-Molecules. Sensors, 2022, 22, 261.	3.8	20
75	Allosteric behaviour of a bis-cyclic crown ether derived from biphenyl. Tetrahedron, 1996, 52, 12499-12508.	1.9	19
76	Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chemical Communications, 2011, 47, 11885.	4.1	19
77	A new fluorescent "turn-on―chemodosimeter for the detection of hydrogen sulfide in water and living cells. RSC Advances, 2013, 3, 25690.	3.6	19
78	A Chemosensor Bearing Sulfonyl Azide Moieties for Selective Chromoâ€Fluorogenic Hydrogen Sulfide Recognition in Aqueous Media and in Living Cells. European Journal of Organic Chemistry, 2014, 2014, 1848-1854.	2.4	19
79	A Boron Dipyrromethene (BODIPY)â€Based Cu ^{II} â€"Bipyridine Complex for Highly Selective NO Detection. Chemistry - A European Journal, 2015, 21, 15486-15490.	3.3	19
80	Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics, 2019, 16, 2418-2429.	4.6	18
81	Resorcinol Functionalized Gold Nanoparticles for Formaldehyde Colorimetric Detection. Nanomaterials, 2019, 9, 302.	4.1	18
82	Fluorescent chemosensors based on cyclohexane: selective sensing of succinate and malonate versus their longer or shorter homologues. Tetrahedron, 2008, 64, 7252-7257.	1.9	17
83	Reaction of 4-substituted 2-azetidinone with nucleophiles. Existence and reactivity of 1-azetin-4-one. Journal of Organic Chemistry, 1990, 55, 434-437.	3.2	16
84	Crown ethers derived from cyclohexane. Influence of their stereochemistry in complexation and transport. Tetrahedron, 2002, 58, 6729-6734.	1.9	16
85	NO ₂ -controlled cargo delivery from gated silica mesoporous nanoparticles. Chemical Communications, 2017, 53, 585-588.	4.1	16
86	1,1-Di-iodoalkenes from aldehydes and triphenylphosphine–carbon tetraiodide. Journal of the Chemical Society Chemical Communications, 1985, .	2.0	15
87	Bis-cyclic crown ethers derived from biphenyl. Influence of conformation in complexation of Hg(SCN)2. Tetrahedron, 1996, 52, 669-676.	1.9	15
88	Cation and anion fluorescent and electrochemical sensors derived from 4,4′-substituted biphenyl. Tetrahedron, 2005, 61, 10309-10320.	1.9	15
89	Towards the potential use of < sup>1 < /sup>H NMR spectroscopy in urine samples for prostate cancer detection. Analyst, The, 2014, 139, 3875-3878.	3.5	15
90	Synthesis, solution and electrochemical behaviour of new aza-crown ethers derived from biphenyl. Dalton Transactions RSC, 2000, , 361-367.	2.3	14

#	Article	IF	Citations
91	Biphenylthioureas as organocatalysts for electrochemical reductions. Tetrahedron Letters, 2007, 48, 6992-6995.	1.4	14
92	Enantioselective sensing of dicarboxylates. Influence of the stoichiometry of the complexes on the sensing mechanism. Tetrahedron: Asymmetry, 2009, 20, 1468-1471.	1.8	14
93	Triarylcarbinol functionalized gold nanoparticles for the colorimetric detection of nerve agent simulants. Tetrahedron Letters, 2014, 55, 3093-3096.	1.4	14
94	On the Ionâ€Pair Recognition and Indication Features of a Fluorescent Heteroditopic Host Based on a BODIPY Core. European Journal of Organic Chemistry, 2014, 2014, 4005-4013.	2.4	14
95	Towards the design of organocatalysts for nerve agents remediation: The case of the active hydrolysis of DCNP (a Tabun mimic) catalyzed by simple amine-containing derivatives. Journal of Hazardous Materials, 2015, 298, 73-82.	12.4	14
96	Selfâ€Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports. Chemistry - A European Journal, 2016, 22, 14126-14130.	3.3	14
97	Solid–liquid extraction of ω-amino acids using ditopic receptors. Tetrahedron, 2008, 64, 110-116.	1.9	13
98	Aza and diazaannulenones. Influence of nitrogen position on their reactivity and stability. Journal of Organic Chemistry, 1991, 56, 5417-5421.	3.2	12
99	Macrolactones and crown ethers derived from biphenyl. Electronic and steric influence of substituents on its complexation ability. Tetrahedron, 1996, 52, 3683-3692.	1.9	12
100	Redox-active crown ethers derived from biphenyl. Electrochemical and spectroscopic study of binding processes with alkali, alkali-earth and mercury salts. Tetrahedron, 1998, 54, 8159-8170.	1.9	12
101	A selective colorimetric chemodosimeter for the naked eye detection of benzoate anion. Tetrahedron Letters, 2006, 47, 6561-6564.	1.4	12
102	A Chalconeâ€Based Highly Selective and Sensitive Chromofluorogenic Probe for Trivalent Metal Cations. ChemPlusChem, 2015, 80, 800-804.	2.8	12
103	Efficacy of budesonide-loaded mesoporous silica microparticles capped with a bulky azo derivative in rats with TNBS-induced colitis. International Journal of Pharmaceutics, 2019, 561, 93-101.	5.2	12
104	Protection against chemical submission: naked-eye detection of \hat{I}^3 -hydroxybutyric acid (GHB) in soft drinks and alcoholic beverages. Chemical Communications, 2020, 56, 12600-12603.	4.1	12
105	Arynic species II. Tetrahedron, 1986, 42, 5641-5648.	1.9	11
106	Redox-active aza-crown ethers derived from biphenyl. electrochemical and solution studies of complexation. Tetrahedron, 1999, 55, 15141-15150.	1.9	11
107	4,4′-Substituted biphenyl coronands. Preparation of a new selective fluorescent sensor for mercury salts. Tetrahedron, 2006, 62, 11972-11978.	1.9	11
108	Relationship between ligand conformations and complexation properties in ditopic biphenyl thioureas. Tetrahedron, 2007, 63, 7899-7905.	1.9	11

#	Article	IF	Citations
109	Aryl carbinols as nerve agent probes. Influence of the conjugation on the sensing properties. New Journal of Chemistry, 2012, 36, 1485.	2.8	11
110	Synthesis and Inâ€Vitro Evaluation of a Photosensitizerâ€BODIPY Derivative for Potential Photodynamic Therapy Applications. Chemistry - an Asian Journal, 2015, 10, 2121-2125.	3.3	11
111	3â€Formylâ€BODIPY Phenylhydrazone as a Chromoâ€Fluorogenic Probe for Selective Detection of NO ₂ (g). Chemistry - A European Journal, 2016, 22, 8448-8451.	3.3	11
112	Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 2018, 23, 375.	3.8	11
113	Fluorescent Cyclohexylâ€Based Chemosensors for Selective Sensing of TMA Malonate in DMSO/Water. European Journal of Organic Chemistry, 2009, 2009, 3673-3677.	2.4	10
114	Influence of side chain characteristics on the aggregation-induced emission (AIE) properties ofÂtetrasubstituted tetraphenylethylene (TPE). RSC Advances, 2017, 7, 14279-14282.	3.6	10
115	Acetylcholine-responsive cargo release using acetylcholinesterase-capped nanomaterials. Chemical Communications, 2019, 55, 5785-5788.	4.1	10
116	Existence and reactivity of bicyclic annulenones. 4-Phenylbicyclo[3.3.0]octa-1(5),3,6-triene-2,8-dione. Journal of Organic Chemistry, 1984, 49, 4616-4618.	3.2	9
117	Reactivity of azaannulenones. Journal of Organic Chemistry, 1988, 53, 6112-6113.	3.2	9
118	The Chemistry of Unsaturated Nitrogen–Heterocyclic Compounds Containing Carbonyl Groups. Advances in Heterocyclic Chemistry, 1993, 58, 171-214.	1.7	9
119	Polyazapodands Derived from Biphenyl. Study of their Behaviour as Conformationally Regulated Fluorescent Sensors. Supramolecular Chemistry, 2004, 16, 435-446.	1.2	9
120	Experimental evidence for the homochiral aggregation of ammonium salts in solution. New Journal of Chemistry, 2006, 30, 1263-1266.	2.8	9
121	Inversion of selectivity in anion recognition with conformationally blocked calix[4]pyrroles. Organic and Biomolecular Chemistry, 2012, 10, 8445.	2.8	9
122	A New Simple Chromoâ€fluorogenic Probe for NO ₂ Detection in Air. Chemistry - A European Journal, 2015, 21, 8720-8722.	3.3	9
123	2,4-dinitrophenyl ether-containing chemodosimeters for the selective and sensitive â€~ <i>in vitro</i> 候 and â€~ <i>in vivo</i> 候 detection of hydrogen sulfide. Supramolecular Chemistry, 2015, 27, 244-254.	1.2	9
124	Structure and Conformational Studies of Azaâ€Crown 8â€Aminoâ€BODIPY Derivatives: Influence of Steric Hindrance on Their Photophysical Properties. European Journal of Organic Chemistry, 2017, 2017, 6283-6290.	2.4	9
125	Existence and reactivity of bicyclic annulenones. 2. Bicyclo [3.3.0] octa-1(5),3,7-triene-2,6-dione. Journal of Organic Chemistry, 1987, 52, 2997-2999.	3.2	8
126	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 45, 241-249.	1.6	8

#	Article	IF	CITATIONS
127	Synthesis of a New pH-Dependent Ligand: Conformational and Complexation Studies. Supramolecular Chemistry, 2003, 15, 403-408.	1.2	8
128	3,3′â€Disubstitued 2,2′â€Bipyridines as Carboxylate Receptors: Conformational Regulation of the Bipyridine Moiety. European Journal of Organic Chemistry, 2008, 2008, 1079-1084.	2.4	8
129	Selective and Sensitive Chromogenic Detection of Trivalent Metal Cations in Water. Bulletin of the Chemical Society of Japan, 2016, 89, 498-500.	3.2	8
130	Thermogravimetric studies of polymeric reagents: a polymeric o-benzyne precursor. Tetrahedron Letters, 1982, 23, 2403-2406.	1.4	7
131	Association constants of alkaline complexes of macrolactones and crown ethers derived from biphenyl. Influence of the position and characteristics of biphenyl substituents. Tetrahedron, 1994, 50, 5381-5386.	1.9	7
132	Concentration depending fluorescence of 8-(di-(2-picolyl))aminoBODIPY in solution. Tetrahedron, 2014, 70, 3735-3739.	1.9	7
133	5,5′-Bis-vanillin derivatives as discriminating sensors for trivalent cations. Tetrahedron Letters, 2015, 56, 3988-3991.	1.4	7
134	Hydrolysis of DCNP (a Tabun mimic) catalysed by mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2015, 217, 30-38.	4.4	7
135	Towards the fluorogenic detection of peroxide explosives through host–guest chemistry. Royal Society Open Science, 2018, 5, 171787.	2.4	7
136	A nitric oxide induced "click―reaction to trigger the aggregation induced emission (AIE) phenomena of a tetraphenyl ethylene derivative: A new fluorescent probe for NO. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112132.	3.9	7
137	A Sensitive Nanosensor for the In Situ Detection of the Cannibal Drug. ACS Sensors, 2020, 5, 2966-2972.	7.8	7
138	Evidence for the formation of 1,3- and 1,4-dehydrobenzenes in the thermal decomposition of diaryliodonium-carboxylates. Tetrahedron Letters, 1986, 27, 4779-4782.	1.4	6
139	Crystal Structure of 6,6′-dimethoxy-2,2′-diphenyl-19-crown-5 Hg(SCN)2. Crystal Research and Technology, 1996, 31, 37-42.	1.3	6
140	Biphenyl-type sensing system in proton-rich environment by fluorescence and quantum-chemical calculations. Journal of Luminescence, 2010, 130, 1085-1091.	3.1	6
141	Selective Recognition and Sensing of Succinate vs. Other Aliphatic Dicarboxylates by Thioureaâ€Functionalized Gold Nanoparticles. ChemistrySelect, 2016, 1, 1057-1060.	1.5	6
142	Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. Royal Society Open Science, 2018, 5, 180873.	2.4	6
143	<scp>A lscp>-glutamate-responsive delivery system based on enzyme-controlled self-immolative arylboronate-gated nanoparticles. Organic Chemistry Frontiers, 2019, 6, 1058-1063.</scp>	4.5	6
144	Enhanced transport through binding cooperativity in a circulating system. Bioorganic and Medicinal Chemistry Letters, 1991, 1, 87-88.	2.2	5

#	Article	IF	CITATIONS
145	Bis-cyclic Crown Ether Derived from Biphenyl. Different Behaviour in Complexing Hg(SCN)2 and Hg(CN)2. Supramolecular Chemistry, 1998, 9, 211-219.	1.2	5
146	Biphenyl Macrolactams as Colorimetric Sensors for Anions through Displacement Reactions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 54, 61-66.	1.6	5
147	Red or Blue? Gold Nanoparticles in Colorimetric Sensing. , 0, , .		5
148	Heteroditopic chemosensor to detect \hat{i}^3 -hydroxybutyric acid (GHB) in soft drinks and alcoholic beverages. Analyst, The, 2021, 146, 5601-5609.	3.5	5
149	Spermine and Spermidine Detection through Restricted Intramolecular Rotations in a Tetraphenylethylene Derivative. Chemosensors, 2022, 10, 8.	3.6	5
150	Generation of monosubstituted o-benzynes from polymeric reagents via heterolytic fragmentations. Tetrahedron Letters, 1984, 25, 779-782.	1.4	4
151	Generation of an unsaturated \hat{l}^2 -lactam intermediate from a polymeric precursor. Reactive & Functional Polymers, 1989, 10, 207-209.	0.8	4
152	Solvatochromic and Single Crystal Studies of Two Neutral Triarylmethane Dyes with a Quinone Methide Structure. Molecules, 2015, 20, 20688-20698.	3.8	4
153	A Fluorescent Chemosensor Able to Distinguish between Ionic and Covalent Mercury Compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2003, 46, 121-124.	1.6	3
154	pH-Dependent ligands as carriers in transport experiments. Comptes Rendus Chimie, 2004, 7, 15-23.	0.5	3
155	Magnetoelectrochemical modulation of pre-organization processes in a 4,4?-dinitrobiphenyl azacrown macrocyclic lactam. Electrochemistry Communications, 2004, 6, 908-912.	4.7	3
156	Complexation of α, ω-dicarboxylates by 3,3′-bis(5-phenyl-1,4-dioxo-2,3,5-triaza)-2,2′-bipyridine. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2008, 62, 203-207.	1.6	3
157	Racemic Triarylmethanol Derivative Crystallizes as a Chiral Crystal Structure with Enantiomeric Disorder, in the Sohncke Space Group <i>P</i> 2 ₁ . Crystal Growth and Design, 2015, 15, 3452-3456.	3.0	3
158	Not always what closes best opens better: mesoporous nanoparticles capped with organic gates. Science and Technology of Advanced Materials, 2019, 20, 699-709.	6.1	3
159	Bifunctionalized Gold Nanoparticles for the Colorimetric Detection of the Drug \hat{I}^3 -Hydroxybutyric Acid (GHB) in Beverages. Chemosensors, 2021, 9, 160.	3.6	3
160	Magnetoelectrochemistry of 4,4′-bis(dimethylamino)biphenyl and 4,4′-dinitrobiphenyl azacrown macrocyclic lactams. Electrochimica Acta, 2005, 50, 4063-4075.	5.2	2
161	Unexplored Nucleophilic Ring Opening of Aziridines. Molecules, 2010, 15, 9135-9144.	3.8	2
162	Low-cost, portable open-source gas monitoring device based on chemosensory technology. Measurement Science and Technology, 2015, 26, 085103.	2.6	2

#	Article	IF	CITATIONS
163	Biphenyl derivatives containing trimethylsilyl benzyl ether or oxime groups as probes for NO2 detection. RSC Advances, 2016, 6, 43719-43723.	3.6	2
164	Peptideâ€Capped Mesoporous Nanoparticles: Toward a more Efficient Internalization of Alendronate. ChemistrySelect, 2020, 5, 3618-3625.	1.5	2
165	Chromogenic Chemodosimeter Based on Capped Silica Particles to Detect Spermine and Spermidine. Nanomaterials, 2021, 11, 818.	4.1	2
166	Fluorescein-Based Thiourea Derivatives as Fluorogenic Sensors for Mono and Dicarboxylates. Sensor Letters, 2010, 8, 818-823.	0.4	2
167	A New Highly Selective Chromogenic and Fluorogenic Chemosensor for Copper (II). Letters in Organic Chemistry, 2018, 15, 659-664.	0.5	2
168	Isomerization and Redox Tuning: Reorganizing the Maya Blue Puzzle from Synthetic, Spectral, and Electrochemical Issues. Journal of Physical Chemistry C, 2021, 125, 26188-26200.	3.1	2
169	New macrocycles derived from biphenyl for pH-switched solvent extraction. Tetrahedron, 2006, 62, 2671-2676.	1.9	1
170	Influence of Cation Size on the Fluorescent Properties of Bis-coronand Biphenyl-derived Complexes. Supramolecular Chemistry, 2007, 19, 151-158.	1.2	1
171	A Simple System Based on a Thioureaâ€Modified Fluorescein for ωâ€Amino Acid Discrimination. European Journal of Organic Chemistry, 2015, 2015, 6597-6601.	2.4	1
172	BODIPY Core as Signaling Unit in Chemosensor Design., 0,,.		1
172 173	BODIPY Core as Signaling Unit in Chemosensor Design., 0, , . Chemical and electrochemical behaviour of 4,4',4'',4''a€™-tetrakis(dimethylamino)-tetraphentan oxidant environment: Toward a new sensor for NO2 and SO2 in gas phase. Sensors and Actuators B: Chemical, 2020, 311, 127929.	ylethylene 7.8	
	Chemical and electrochemical behaviour of 4,4',4',4',4''a€™a€™.tetrakis(dimethylamino)-tetraphen an oxidant environment: Toward a new sensor for NO2 and SO2 in gas phase. Sensors and Actuators B:		in
173	Chemical and electrochemical behaviour of 4,4',4',4',4''.4etrakis(dimethylamino)-tetraphen an oxidant environment: Toward a new sensor for NO2 and SO2 in gas phase. Sensors and Actuators B: Chemical, 2020, 311, 127929.	7.8	in 1
173 174	Chemical and electrochemical behaviour of 4,4',4''''.4ꀙ'.tetrakis(dimethylamino)-tetraphent an oxidant environment: Toward a new sensor for NO2 and SO2 in gas phase. Sensors and Actuators B: Chemical, 2020, 311, 127929. Antiaromatic annulenones. Reactive Polymers, Ion Exchangers, Sorbents, 1987, 6, 203-206. Polymer-bound precursors of diimine: Pericyclic reactions. Reactive Polymers, Ion Exchangers,	0.0	in 1
173 174 175	Chemical and electrochemical behaviour of 4,4',4',4',4',4',4'.tetrakis(dimethylamino)-tetraphent an oxidant environment: Toward a new sensor for NO2 and SO2 in gas phase. Sensors and Actuators B: Chemical, 2020, 311, 127929. Antiaromatic annulenones. Reactive Polymers, Ion Exchangers, Sorbents, 1987, 6, 203-206. Polymer-bound precursors of diimine: Pericyclic reactions. Reactive Polymers, Ion Exchangers, Sorbents, 1987, 6, 291-298.	0.0	in 1 0 0
173 174 175 176	Chemical and electrochemical behaviour of 4,4',4',4',4',4',4',4',4â€	0.0 0.0 0.8	in 1 0 0 0
173 174 175 176	Chemical and electrochemical behaviour of 4,4',4'',4''''''.tetrakis(dimethylamino)-tetraphentan oxidant environment: Toward a new sensor for NO2 and SO2 in gas phase. Sensors and Actuators B: Chemical, 2020, 311, 127929. Antiaromatic annulenones. Reactive Polymers, Ion Exchangers, Sorbents, 1987, 6, 203-206. Polymer-bound precursors of diimine: Pericyclic reactions. Reactive Polymers, Ion Exchangers, Sorbents, 1987, 6, 291-298. Transfer between solid phases. Mechanistic studies. Reactive & Functional Polymers, 1989, 10, 189-206. Reactivity of Bis(2-chloroethyl)ether with Different Amines. Journal of Chemical Research Synopses, 1998, , 378-378. Complexation Studies Using Azamacrolactones Derived from Biphenyl. Journal of Inclusion	0.0 0.0 0.8	in 1 0 0 0 0

#	Article	IF	CITATIONS
181	Frontispiece: Self″mmolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports. Chemistry - A European Journal, 2016, 22, .	3.3	O
182	Colorimetric sensing of anions by a neutral biphenyl based amide receptor. Arkivoc, 2007, 2007, 92-101.	0.5	0