
Ave Sarapuu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2221437/publications.pdf Version: 2024-02-01

Δνε ςαραριμι

#	Article	IF	CITATIONS
1	Transition metal and nitrogen-doped mesoporous carbons as cathode catalysts for anion-exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 306, 121113.	20.2	42
2	Cobalt-Containing Nitrogen-Doped Carbon Materials Derived from Saccharides as Efficient Electrocatalysts for Oxygen Reduction Reaction. Catalysts, 2022, 12, 568.	3.5	3
3	Transition Metal and Nitrogen-Doped Mesoporous Carbons As Cathode Catalysts for Anion-Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2022, MA2022-01, 1521-1521.	0.0	0
4	Fe- and Co-Containing Nitrogen-Doped Nanocarbon Catalysts from 5-Methylresorcinol for Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2022, MA2022-01, 1418-1418.	0.0	0
5	Electroreduction of oxygen on iron- and cobalt-containing nitrogen-doped carbon catalysts prepared from the rapeseed press cake. Journal of Electroanalytical Chemistry, 2022, 920, 116599.	3.8	4
6	Electroreduction of oxygen on cobalt phthalocyanine-modified carbide-derived carbon/carbon nanotube composite catalysts. Journal of Solid State Electrochemistry, 2021, 25, 57-71.	2.5	37
7	Transition metal-containing nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol for anion exchange membrane fuel cell application. Journal of Colloid and Interface Science, 2021, 584, 263-274.	9.4	50
8	Transition-Metal- and Nitrogen-Doped Carbide-Derived Carbon/Carbon Nanotube Composites as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells. ACS Catalysis, 2021, 11, 1920-1931.	11.2	85
9	Bifunctional multi-metallic nitrogen-doped nanocarbon catalysts derived from 5-methylresorcinol. Electrochemistry Communications, 2021, 124, 106932.	4.7	16
10	Mesoporous iron-nitrogen co-doped carbon material as cathode catalyst for the anion exchange membrane fuel cell. Journal of Power Sources Advances, 2021, 8, 100052.	5.1	43
11	Iron ontaining Nitrogenâ€Doped Carbon Nanomaterials Prepared via NaCl Template as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 2288-2297.	3.4	7
12	Transition Metal and Nitrogen-Doped Carbide-Derived Carbon/Carbon Nanotube Composites As Cathode Catalysts for Anion-Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2021, MA2021-02, 1213-1213.	0.0	1
13	Oxygen reduction reaction on nanostructured Pt-based electrocatalysts: A review. International Journal of Hydrogen Energy, 2020, 45, 31775-31797.	7.1	127
14	Cathode Catalysts Based on Cobalt- and Nitrogen-Doped Nanocarbon Composites for Anion Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2020, 3, 5375-5384.	5.1	61
15	Electroreduction of Oxygen on Carbideâ€Derived Carbon Supported Pd Catalysts. ChemElectroChem, 2020, 7, 546-554.	3.4	10
16	Nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion exchange membrane fuel cell application. Applied Catalysis B: Environmental, 2020, 272, 119012.	20.2	72
17	Nitrogen-Doped Carbide-Derived Carbon/Carbon Nanotube Composites As Cathode Catalysts for Anion Exchange Membrane Fuel Cell Application. ECS Meeting Abstracts, 2020, MA2020-02, 2390-2390.	0.0	0
18	Electrocatalysts Based on Cobalt- and Nitrogen-Doped Nanocarbon Composites for Oxygen Reduction Reaction and Anion Exchange Membrane Fuel Cells. ECS Meeting Abstracts, 2020, MA2020-02, 2396-2396.	0.0	0

Ave Sarapuu

#	Article	IF	CITATIONS
19	Transition Metal-Containing Nitrogen-Doped Nanocarbons Derived from 5-Methylresorcinol for Anion Exchange Membrane Fuel Cell Application. ECS Meeting Abstracts, 2020, MA2020-02, 2361-2361.	0.0	0
20	Electroreduction of oxygen on Nafion®-coated thin platinum films in acid media. Journal of Electroanalytical Chemistry, 2019, 848, 113292.	3.8	14
21	Oxygen Reduction Reaction on Silver Catalysts in Alkaline Media: a Minireview. ChemElectroChem, 2019, 6, 73-86.	3.4	110
22	Oxygen Reduction on Fe―and Coâ€Containing Nitrogenâ€Doped Nanocarbons. ChemElectroChem, 2018, 5, 2002-2009.	3.4	20
23	Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. Journal of Materials Chemistry A, 2018, 6, 776-804.	10.3	357
24	Electrocatalysis of oxygen reduction by iron-containing nitrogen-doped carbon aerogels in alkaline solution. Electrochimica Acta, 2017, 230, 81-88.	5.2	51
25	Electroreduction of oxygen on nitrogen-doped graphene oxide supported silver nanoparticles. Journal of Electroanalytical Chemistry, 2017, 794, 197-203.	3.8	35
26	Electrocatalysis of oxygen reduction on iron- and cobalt-containing nitrogen-doped carbon nanotubes in acid media. Electrochimica Acta, 2016, 218, 303-310.	5.2	42
27	Recent progress in oxygen reduction electrocatalysis on Pd-based catalysts. Journal of Electroanalytical Chemistry, 2016, 780, 327-336.	3.8	77
28	Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application. Journal of Power Sources, 2016, 332, 129-138.	7.8	86
29	Oxygen electroreduction on carbon-supported Pd nanocubes in acid solutions. Electrochimica Acta, 2016, 188, 301-308.	5.2	37
30	Oxygen reduction reaction on carbon-supported palladium nanocubes in alkaline media. Electrochemistry Communications, 2016, 64, 9-13.	4.7	44
31	Cobaltâ€Containing Nitrogenâ€Doped Carbon Aerogels as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 2079-2088.	3.4	46
32	Cobalt- and iron-containing nitrogen-doped carbon aerogels as non-precious metal catalysts for electrochemical reduction of oxygen. Journal of Electroanalytical Chemistry, 2015, 746, 9-17.	3.8	74
33	Oxygen Electroreduction on Electrodeposited PdAu Nanoalloys. Electrocatalysis, 2015, 6, 77-85.	3.0	35
34	Electrocatalysis of oxygen reduction on glassy carbon electrodes modified with anthraquinone moieties. Journal of Solid State Electrochemistry, 2014, 18, 1725-1733.	2.5	4
35	Shapeâ€Dependent Electrocatalysis: Oxygen Reduction on Carbon‣upported Gold Nanoparticles. ChemElectroChem, 2014, 1, 1338-1347.	3.4	40
36	Oxygen reduction on thick anthraquinone films electrografted to glassy carbon. Journal of Electroanalytical Chemistry, 2013, 702, 8-14.	3.8	17

Ave Sarapuu

#	Article	IF	CITATIONS
37	Electroreduction of oxygen on sputter-deposited Pd nanolayers on multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2013, 38, 3614-3620.	7.1	48
38	Electrocatalysis of oxygen reduction on electrodeposited Pd coatings on gold. Journal of Electroanalytical Chemistry, 2013, 691, 35-41.	3.8	22
39	Oxygen reduction on electrodeposited Pd coatings on glassy carbon. Electrochimica Acta, 2013, 88, 513-518.	5.2	35
40	Electrocatalytic oxygen reduction on silver nanoparticle/multi-walled carbon nanotube modified glassy carbon electrodes in alkaline solution. Electrochemistry Communications, 2012, 20, 15-18.	4.7	109
41	Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochimica Acta, 2012, 59, 329-335.	5.2	141
42	Oxygen reduction on Nafion-coated thin-film palladium electrodes. Journal of Electroanalytical Chemistry, 2011, 652, 1-7.	3.8	57
43	Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochemistry Communications, 2011, 13, 734-737.	4.7	108
44	Electroreduction of oxygen on Vulcan carbon supported Pd nanoparticles and Pd–M nanoalloys in acid and alkaline solutions. Electrochimica Acta, 2011, 56, 6702-6708.	5.2	68
45	Electroreduction of oxygen on gold-supported nanostructured palladium films in acid solutions. Electrochimica Acta, 2010, 55, 6768-6774.	5.2	49
46	Electrocatalysis of oxygen reduction by quinones adsorbed on highly oriented pyrolytic graphite electrodes. Electrochimica Acta, 2010, 55, 6376-6382.	5.2	60
47	Electroreduction of oxygen on carbon-supported gold catalysts. Electrochimica Acta, 2009, 54, 7483-7489.	5.2	41
48	Electroreduction of oxygen on gold-supported thin Pt films in acid solutions. Journal of Electroanalytical Chemistry, 2008, 624, 144-150.	3.8	24
49	Electrochemical reduction of oxygen on nanostructured gold electrodes. Journal of Electroanalytical Chemistry, 2008, 612, 78-86.	3.8	75
50	Electrochemical reduction of oxygen on thin-film Pt electrodes in acid solutions. Electrochimica Acta, 2008, 53, 5873-5880.	5.2	74
51	Kinetics of Oxygen Reduction on Quinone-Modified HOPG and BDD Electrodes in Alkaline Solution. Electrochemical and Solid-State Letters, 2005, 8, E30.	2.2	72
52	Oxygen reduction on phenanthrenequinone-modified glassy carbon electrodes in 0.1 M KOH. Journal of Electroanalytical Chemistry, 2004, 564, 159-166.	3.8	129
53	Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. Journal of Electroanalytical Chemistry, 2003, 541, 23-29.	3.8	216
54	Electrochemical reduction of oxygen on thin-film Au electrodes in acid solution. Electrochemistry Communications, 2001, 3, 446-450.	4.7	77