Hua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2219817/publications.pdf

Version: 2024-02-01

		840776 996975	
14	2,054 citations	11	15
papers	citations	h-index	g-index
15	15	15	1849
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33, 531-537.	17.5	1,560
2	Small interfering <scp>RNA</scp> s from bidirectional transcripts of <i>Gh<scp>MML</scp>3_A12</i> regulate cotton fiber development. New Phytologist, 2016, 210, 1298-1310.	7.3	124
3	Genetics and evolution of <scp>MIXTA</scp> genes regulating cotton lint fiber development. New Phytologist, 2018, 217, 883-895.	7.3	112
4	Genome-Wide Transcriptome Profiling Revealed Cotton Fuzz Fiber Development Having a Similar Molecular Model as Arabidopsis Trichome. PLoS ONE, 2014, 9, e97313.	2.5	54
5	Genome-Wide Identification of the MIKC-Type MADS-Box Gene Family in Gossypium hirsutum L. Unravels Their Roles in Flowering. Frontiers in Plant Science, 2017, 8, 384.	3.6	54
6	Molecular cloning and characterization of an F-box family gene CarF-box1 from chickpea (Cicer) Tj ETQq0 0 0 rgl	BT <u>lO</u> verlo	ck 10 Tf 50 5
7	CarNAC2, a novel NAC transcription factor in chickpea (Cicer arietinum L.), is associated with drought-response and various developmental processes in transgenic arabidopsis. Journal of Plant Biology, 2014, 57, 55-66.	2.1	24
8	Identification and characterization of a LEA family gene CarLEA4 from chickpea (Cicer arietinum L.). Molecular Biology Reports, 2012, 39, 3565-3572.	2.3	17
9	Genome-Wide Analysis of Small RNA and Novel MicroRNA Discovery during Fiber and Seed Initial Development in Gossypium hirsutum. L. PLoS ONE, 2013, 8, e69743.	2.5	17
10	Genome-wide characterization of the UDP-glycosyltransferase gene family in upland cotton. 3 Biotech, 2019, 9, 453.	2.2	17
11	Validation of reference genes for accurate normalization of gene expression with quantitative real-time PCR in Haloxylon ammodendron under different abiotic stresses. Physiology and Molecular Biology of Plants, 2018, 24, 455-463.	3.1	14
12	Effect of high desert surface layer temperature stress on Haloxylon ammodendron (C.A. Mey.) Bunge. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 572-580.	1.2	12
13	A cupin domain is involved in α-amylase inhibitory activity. Plant Science, 2018, 277, 285-295.	3.6	10
14	Transcriptome Analysis Reveals Genes Respond to Chlorophyll Deficiency in Green and Yellow Leaves of Chrysanthemum morifolium Ramat. Horticulturae, 2022, 8, 14.	2.8	2