Marina Pasca di Magliano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2218682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	KDM6A Regulates Cell Plasticity and Pancreatic Cancer Progression by Noncanonical Activin Pathway. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 643-667.	4.5	18
2	Immune sensing of microbial metabolites: Action at the tumor. Immunity, 2022, 55, 192-194.	14.3	6
3	Cleaved CDCP1 marks the spot: a neoepitope for RAS-driven cancers. Journal of Clinical Investigation, 2022, 132, .	8.2	0
4	Multiomic characterization of pancreatic cancer-associated macrophage polarization reveals deregulated metabolic programs driven by the GM-CSF–PI3K pathway. ELife, 2022, 11, .	6.0	29
5	Extrinsic KRAS Signaling Shapes the Pancreatic Microenvironment Through Fibroblast Reprogramming. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1673-1699.	4.5	36
6	The Gustatory Sensory G-Protein GNAT3 Suppresses Pancreatic Cancer Progression in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 349-369.	4.5	25
7	ATDC binds to KEAP1 to drive NRF2-mediated tumorigenesis and chemoresistance in pancreatic cancer. Genes and Development, 2021, 35, 218-233.	5.9	23
8	Immunotherapy for pancreatic ductal adenocarcinoma. Journal of Surgical Oncology, 2021, 123, 751-759.	1.7	18
9	Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages. Life Science Alliance, 2021, 4, e202000935.	2.8	64
10	Loss of activating transcription factor 3 prevents KRAS-mediated pancreatic cancer. Oncogene, 2021, 40, 3118-3135.	5.9	16
11	Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB–Mediated Production of CXCL1. Cancer Research, 2021, 81, 4305-4318.	0.9	80
12	Therapeutic Potential of Targeting Stromal Crosstalk-Mediated Immune Suppression in Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 682217.	2.8	13
13	Myeloid Cell Mediated Immune Suppression in Pancreatic Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1531-1542.	4.5	21
14	Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell, 2021, 39, 1227-1244.e20.	16.8	158
15	New Insights Into Pancreatic Cancer: Notes from a Virtual Meeting. Gastroenterology, 2021, 161, 785-791.	1.3	5
16	Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clinical Cancer Research, 2021, 27, 2023-2037.	7.0	156
17	KrasG12D induces changes in chromatin territories that differentially impact early nuclear reprogramming in pancreatic cells. Genome Biology, 2021, 22, 289.	8.8	6
18	Abstract PO-096: The synaptic protein Netrin G1 ligand (NGL-1) modulates tumorigenesis and		0

immunosuppression in pancreatic cancer., 2021, ,.

#	Article	IF	CITATIONS
19	Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis. Cancer Discovery, 2020, 10, 422-439.	9.4	223
20	Interleukin 22 Signaling Regulates Acinar Cell Plasticity to Promote Pancreatic Tumor Development in Mice. Gastroenterology, 2020, 158, 1417-1432.e11.	1.3	48
21	Differential Contribution of Pancreatic Fibroblast Subsets to the Pancreatic Cancer Stroma. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 581-599.	4.5	62
22	Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells, 2020, 9, 2464.	4.1	31
23	Targeting the Microenvironment to Overcome Gemcitabine Resistance in Pancreatic Cancer. Cancer Research, 2020, 80, 3070-3071.	0.9	11
24	Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer. Nature Cancer, 2020, 1, 1097-1112.	13.2	234
25	Discoidin Domain Receptor 1 (DDR1) Is Necessary for Tissue Homeostasis in Pancreatic Injury and Pathogenesis of Pancreatic Ductal Adenocarcinoma. American Journal of Pathology, 2020, 190, 1735-1751.	3.8	27
26	Chemotherapy and Tumor Evolution Shape Pancreatic Cancer Recurrence after Resection. Cancer Discovery, 2020, 10, 762-764.	9.4	24
27	Context-Dependent Immune Responses Explain Pancreatic Cancer Immunoresistance. Cancer Cell, 2020, 37, 261-263.	16.8	9
28	Beta 1 integrin signaling mediates pancreatic ductal adenocarcinoma resistance to MEK inhibition. Scientific Reports, 2020, 10, 11133.	3.3	11
29	Mathematical Modeling of the Metastatic Colorectal Cancer Microenvironment Defines the Importance of Cytotoxic Lymphocyte Infiltration and Presence of PD-L1 on Antigen Presenting Cells. Annals of Surgical Oncology, 2019, 26, 2821-2830.	1.5	21
30	Myeloid Cell-Derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 173-192.	4.5	23
31	Inhibition of ATM Increases Interferon Signaling and Sensitizes Pancreatic Cancer to Immune Checkpoint Blockade Therapy. Cancer Research, 2019, 79, 3940-3951.	0.9	154
32	ATDC is required for the initiation of KRAS-induced pancreatic tumorigenesis. Genes and Development, 2019, 33, 641-655.	5.9	20
33	Signaling Networks That Control Cellular Plasticity in Pancreatic Tumorigenesis, Progression, and Metastasis. Gastroenterology, 2019, 156, 2073-2084.	1.3	45
34	Macrophage-Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer. Cell Metabolism, 2019, 29, 1390-1399.e6.	16.2	280
35	Epithelial-Stromal Interactions in Pancreatic Cancer. Annual Review of Physiology, 2019, 81, 211-233.	13.1	33
36	An Organoid/Immune Cell Coâ€Culture as a Predictive Model for the Treatment of Pancreatic Cancer. FASEB Journal, 2019, 33, 869.20.	0.5	1

#	Article	IF	CITATIONS
37	Pancreatic HIF2α Stabilization Leads to Chronic Pancreatitis and Predisposes to Mucinous Cystic Neoplasm. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 169-185.e2.	4.5	12
38	Usp9x Promotes Survival in Human Pancreatic Cancer and Its Inhibition Suppresses Pancreatic Ductal Adenocarcinoma In Vivo Tumor Growth. Neoplasia, 2018, 20, 152-164.	5.3	22
39	Spatial and phenotypic immune profiling of metastatic colon cancer. JCI Insight, 2018, 3, .	5.0	73
40	Tracking Macrophage Infiltration in a Mouse Model of Pancreatic Cancer with the Positron Emission Tomography Tracer [11C]PBR28. Journal of Surgical Research, 2018, 232, 570-577.	1.6	16
41	Tumor cross-talk networks promote growth and support immune evasion in pancreatic cancer. American Journal of Physiology - Renal Physiology, 2018, 315, G27-G35.	3.4	18
42	Mutant p53R270H drives altered metabolism and increased invasion in pancreatic ductal adenocarcinoma. JCI Insight, 2018, 3, .	5.0	24
43	Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut, 2017, 66, 124-136.	12.1	269
44	Phenformin Inhibits Myeloid-Derived Suppressor Cells and Enhances theÂAnti-Tumor Activity of PD-1 Blockade inÂMelanoma. Journal of Investigative Dermatology, 2017, 137, 1740-1748.	0.7	107
45	Mitogen-activated Protein Kinase Kinase Activity Maintains Acinar-to-Ductal Metaplasia and Is Required for Organ Regeneration in Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 99-118.	4.5	48
46	Epithelial-Myeloid cell crosstalk regulates acinar cell plasticity and pancreatic remodeling in mice. ELife, 2017, 6, .	6.0	40
47	Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance <i>via</i> a BMP4/HH signaling loop. Oncotarget, 2016, 7, 6916-6932.	1.8	104
48	GM-CSF Mediates Mesenchymal–Epithelial Cross-talk in Pancreatic Cancer. Cancer Discovery, 2016, 6, 886-899.	9.4	156
49	Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation. Cancer Immunology Research, 2016, 4, 520-530.	3.4	79
50	Early pancreatic islet fate and maturation is controlled through RBP-Jκ. Scientific Reports, 2016, 6, 26874.	3.3	9
51	Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia, 2016, 18, 666-673.	5.3	33
52	Mesenchymal Stem Cells Promote Pancreatic Tumor Growth by Inducing Alternative Polarization of Macrophages. Neoplasia, 2016, 18, 142-151.	5.3	91
53	Invasive mouse gastric adenocarcinomas arising from Lgr5+ stem cells are dependent on crosstalk between the Hedgehog/GLI2 and mTOR pathways. Oncotarget, 2016, 7, 10255-10270.	1.8	25
54	ATDC induces an invasive switch in KRAS-induced pancreatic tumorigenesis. Genes and Development, 2015, 29, 171-183.	5.9	58

1

#	Article	IF	CITATIONS
55	CD44 Regulates Pancreatic Cancer Invasion through MT1-MMP. Molecular Cancer Research, 2015, 13, 9-15.	3.4	77
56	Bmi1 is required for the initiation of pancreatic cancer through an Ink4a-independent mechanism. Carcinogenesis, 2015, 36, 730-738.	2.8	29
57	Change isn't always better. ELife, 2015, 4, .	6.0	0
58	Epithelial Notch signaling is a limiting step for pancreatic carcinogenesis. BMC Cancer, 2014, 14, 862.	2.6	31
59	Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. Frontiers in Physiology, 2014, 5, 464.	2.8	20
60	Dosage-Dependent Regulation of Pancreatic Cancer Growth and Angiogenesis by Hedgehog Signaling. Cell Reports, 2014, 9, 484-494.	6.4	85
61	Immune cells in pancreatic cancer. Oncolmmunology, 2014, 3, e29125.	4.6	5
62	MAPK Signaling Is Required for Dedifferentiation of Acinar Cells and Development of Pancreatic Intraepithelial Neoplasia in Mice. Gastroenterology, 2014, 146, 822-834.e7.	1.3	102
63	CD4+ T Lymphocyte Ablation Prevents Pancreatic Carcinogenesis in Mice. Cancer Immunology Research, 2014, 2, 423-435.	3.4	92
64	The Transcription Factor GLI1 Modulates the Inflammatory Response during Pancreatic Tissue Remodeling. Journal of Biological Chemistry, 2014, 289, 27727-27743.	3.4	43
65	Abstract IA12: Oncogenic KRAS and the inflammatory microenvironment in pancreatic cancer. , 2014, , .		1
66	Roles for KRAS in Pancreatic Tumor Development and Progression. Gastroenterology, 2013, 144, 1220-1229.	1.3	335
67	Interleukin-6 Is Required for Pancreatic Cancer Progression by Promoting MAPK Signaling Activation and Oxidative Stress Resistance. Cancer Research, 2013, 73, 6359-6374.	0.9	208
68	Deciphering the role of stroma in pancreatic cancer. Current Opinion in Gastroenterology, 2013, 29, 537-543.	2.3	112
69	Canonical Wnt Signaling Is Required for Pancreatic Carcinogenesis. Cancer Research, 2013, 73, 4909-4922.	0.9	168
70	Loss of the Transcription Factor GL11 Identifies a Signaling Network in the Tumor Microenvironment Mediating KRAS Oncogene-induced Transformation. Journal of Biological Chemistry, 2013, 288, 11786-11794.	3.4	101
71	Kras as a key oncogene and therapeutic target in pancreatic cancer. Frontiers in Physiology, 2013, 4, 407.	2.8	101

72 Mouse Models of Pancreatic Ductal Adenocarcinoma. , 2013, , 145-170.

#	Article	IF	CITATIONS
73	Metastatic Pancreatic Cancer Is Dependent on Oncogenic Kras in Mice. PLoS ONE, 2012, 7, e49707.	2.5	146
74	Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. Journal of Clinical Investigation, 2012, 122, 639-653.	8.2	613
75	c-Met Is a Marker of Pancreatic Cancer Stem Cells and Therapeutic Target. Gastroenterology, 2011, 141, 2218-2227.e5.	1.3	333
76	Pancreatic Cancer and Hedgehog Pathway Signaling: New Insights. Pancreatology, 2010, 10, 151-157.	1.1	23
77	New Frontiers in Pancreatic Cancer Research. Surgical Oncology Clinics of North America, 2010, 19, 431-451.	1.5	2
78	Stepwise Activation of Enhancer and Promoter Regions of the B Cell Commitment Gene Pax5 in Early Lymphopoiesis. Immunity, 2009, 30, 508-520.	14.3	175
79	Common Activation of Canonical Wnt Signaling in Pancreatic Adenocarcinoma. PLoS ONE, 2007, 2, e1155.	2.5	199
80	A Smallâ€Molecule Antagonist of the Hedgehog Signaling Pathway. ChemBioChem, 2007, 8, 1916-1919.	2.6	71
81	Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes and Development, 2006, 20, 3161-3173.	5.9	270
82	Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 2003, 425, 851-856.	27.8	1,395
83	Hedgehog signalling in cancer formation and maintenance. Nature Reviews Cancer, 2003, 3, 903-911.	28.4	785
84	The Thyroid Transcription Factor 2 (TTF-2) Is a Promoter-Specific DNA-Binding Independent Transcriptional Repressor. Biochemical and Biophysical Research Communications, 2000, 275, 203-208.	2.1	61
85	Metabolic requirement for GOT2 in pancreatic cancer depends on environmental context. ELife, 0, 11, .	6.0	32