Kumar Biradha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/221864/publications.pdf

Version: 2024-02-01

219 papers

13,189 citations

28274 55 h-index 25787 108 g-index

232 all docs 232 docs citations

times ranked

232

9217 citing authors

#	Article	IF	Citations
1	Comparative Study of Nitro―and Azideâ€Functionalized Zn ^{II} â€Based Coordination Polymers (CPs) as Fluorescent Turnâ€On Probes for Rapid and Selective Detection of H ₂ S in Living Cells. Chemistry - A European Journal, 2022, 28, .	3.3	4
2	Binary Solvent System Composed of Polar Protic and Polar Aprotic Solvents for Controlling the Dimensionality of MOFs in the Solvothermal Synthesis. Crystal Growth and Design, 2022, 22, 1276-1282.	3.0	18
3	Coordination Polymers as Heterogeneous Catalysts for Water Splitting and CO ₂ Fixation. Crystal Growth and Design, 2022, 22, 2043-2045.	3.0	11
4	Halogenâ‹â‹â‹Halogen and Halogenâ‹â‹â‹ï€ Interactions Enabled Reversible Photoâ€oligomerization of Dienones: Visible Light Triggered Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformation. Angewandte Chemie - International Edition, 2022, 61, .	5 0	ed 15
5	<i>In Situ</i> Grown Mn(II) MOF upon Nickel Foam Acts as a Robust Self-Supporting Bifunctional Electrode for Overall Water Splitting: A Bimetallic Synergistic Collaboration Strategy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 29722-29734.	8.0	30
6	Elastic orange emissive single crystals of 1,3-diamino-2,4,5,6-tetrabromobenzene as flexible optical waveguides. Journal of Materials Chemistry C, 2021, 9, 9465-9472.	5.5	15
7	Metal–organic frameworks as proton conductors: strategies for improved proton conductivity. Dalton Transactions, 2021, 50, 10655-10673.	3.3	36
8	Effect of Noncovalent Interactions on the Intersystem Crossing Behavior in Charge-Transfer Cocrystals of 3,5-Dinitrobromobenzene. Journal of Physical Chemistry C, 2021, 125, 120-129.	3.1	9
9	Photoinduced Bending of Single Crystals of a Linear Bisâ€Olefin via Waterâ€Templated Solidâ€State [2+2] Photopolymerization Reaction. Chemistry - A European Journal, 2020, 26, 396-400.	3.3	26
10	Coordination polymers as heterogeneous catalysts in hydrogen evolution and oxygen evolution reactions. Chemical Communications, 2020, 56, 10824-10842.	4.1	61
11	Cocrystals and Salts of 4,4′-Dinitro-2,2′,6,6′-tetracarboxybiphenyl with N-Heterocycles: Solid State Photodimerization of Criss-Cross Aligned Olefins and Photophysical Properties. Crystal Growth and Design, 2020, 20, 8059-8070.	3.0	6
12	Photochemical [2 + 2] polymerization of metal–organic gels of a rigid and angular diene with silver-salts of diverse anions: selective dye-sorption and luminescence by xerogels. Dalton Transactions, 2020, 49, 13744-13752.	3.3	4
13	Porous Li-MOF as a solid-state electrolyte: exploration of lithium ion conductivity through bio-inspired ionic channels. Chemical Communications, 2020, 56, 14873-14876.	4.1	18
14	Amino- and Sulfonate-Functionalized Metal–Organic Framework for Fabrication of Proton Exchange Membranes with Improved Proton Conductivity. Crystal Growth and Design, 2020, 20, 5557-5563.	3.0	37
15	2D MOFs with Ni(II), Cu(II), and Co(II) as Efficient Oxygen Evolution Electrocatalysts: Rationalization of Catalytic Performance <i>vs</i> Structure of the MOFs and Potential of the Redox Couples. ACS Applied Materials & Date:	8.0	64
16	Is the origin of green fluorescence in unsymmetrical four-ring bent-core liquid crystals single or double proton transfer?. Physical Chemistry Chemical Physics, 2020, 22, 4731-4740.	2.8	11
17	Isostructural Ni ^{II} Metal–Organic Frameworks (MOFs) for Efficient Electrocatalysis of Oxygen Evolution Reaction and for Gas Sorption Properties. Chemistry - A European Journal, 2019, 25, 11141-11146.	3.3	16
18	Binary and Ternary Salts and Cocrystals of 2-(2-(Pyridine-4-yl)vinyl)-1 <i>H</i> benzimidazole with Aromatic Carboxylic Acids: Solid-State [2 + 2] Reactions, Photoluminescence, and Ammonia-Sensing Properties. Crystal Growth and Design, 2019, 19, 4602-4612.	3.0	14

#	Article	IF	Citations
19	Isoreticular Expansion of Metal–Organic Frameworks via Pillaring of Metal Templated Tunable Building Layers: Hydrogen Storage and Selective CO ₂ Capture. Chemistry - A European Journal, 2019, 25, 14500-14505.	3.3	15
20	Tailoring Coordination Polymers by Substituent Effect: A Bifunctional Co II â€Doped 1Dâ€Coordination Network with Electrochemical Water Oxidation and Nitroaromatics Sensing. Chemistry - an Asian Journal, 2019, 14, 3742-3747.	3.3	17
21	Protonâ€Conducting Hydrogenâ€Bonded 3D Frameworks of Imidazoâ€Pyridineâ€Based Coordination Complexes Containing Naphthalene Disulfonates in Rhomboid Channels. Chemistry - an Asian Journal, 2019, 14, 4389-4394.	3.3	14
22	Metal–Organic Frameworks and Metal–Organic Framework-Derived N-Doped Porous Carbon Materials as Heterogeneous Catalysts: Chemical Fixation of Carbon Dioxide under Mild Conditions and Electrochemical Hydrogen Evolution. Crystal Growth and Design, 2019, 19, 6672-6681.	3.0	20
23	MOFs containing a linear bis-pyridyl-tris-amide and angular carboxylates: exploration of proton conductivity, water vapor and dye sorptions. Inorganic Chemistry Frontiers, 2019, 6, 184-191.	6.0	41
24	Organic Polymers of an Angular Diene via Solid State $[2+2]$ Polymerization: Coordination Polymers with Dicarboxylates as Templates. Crystal Growth and Design, 2019, 19, 3445-3452.	3.0	9
25	Cocrystals and Salts of 3,5-Bis(pyridinylmethylene)piperidin-4-one with Aromatic Poly-Carboxylates and Resorcinols: Influence of Stacking Interactions on Solid-State Luminescence Properties. Australian Journal of Chemistry, 2019, 72, 742.	0.9	3
26	MOF-templated cobalt nanoparticles embedded in nitrogen-doped porous carbon: a bifunctional electrocatalyst for overall water splitting. Nanoscale Advances, 2019, 1, 2293-2302.	4.6	26
27	Fluorescent Dye-Based Metal–Organic Framework Piezochromic and Multicolor-Emitting Two-Dimensional Materials for Light-Emitting Devices. ACS Applied Nano Materials, 2019, 2, 1614-1620.	5.0	20
28	Interplay of Halogen Bonding and Hydrogen Bonding in the Cocrystals and Salts of Dihalogens and Trihalides with ⟨i⟩N⟨ i⟩,⟨i⟩N⟨ i⟩′-Bis(3-pyridylacrylamido) Derivatives: Phosphorescent Organic Salts. Crystal Growth and Design, 2019, 19, 2175-2188.	3.0	12
29	Solid or gel? Which one works better for $[2 + 2]$ photochemical polymerization in pyridine appended flexible phenylene 1, 4-bis-olefins by Ag($<$ scp $>$ i $<$ /scp $>$) templation?. Dalton Transactions, 2019, 48, 17456-17460.	3.3	7
30	Luminescent Triazene-Based Covalent Organic Frameworks Functionalized with Imine and Azine: N ₂ and H ₂ Sorption and Efficient Removal of Organic Dye Pollutants. Crystal Growth and Design, 2019, 19, 362-368.	3.0	32
31	Photochemical Reactions in Supramolecular Assemblies of Gels: Dimerizations and Polymerizations via Pericyclic Reactions. Israel Journal of Chemistry, 2019, 59, 220-232.	2.3	7
32	Selfâ€Sorting of Metal–Organic Polymeric Assemblies in Gels: Selective Templation and Catalysis of Homodimers. Chemistry - A European Journal, 2018, 24, 5760-5764.	3.3	11
33	Tuning Emission Properties via Aromatic Guest Inclusion in Organic Salts Composed of 4,4′-Dinitro-2,2′,6,6′-tetracarboxybiphenyl and Acridine. Crystal Growth and Design, 2018, 18, 581-586.	3.0	20
34	Crystal engineering with isosteric triether and triamine linked aromatic tri-carboxylic acids: iso-structurality and synthon interplay in their co-crystals and salts with bis(pyridyl) derivatives. New Journal of Chemistry, 2018, 42, 19953-19962.	2.8	4
35	Origin of green photoluminescence in four-ring bent-core molecules with ESIPT, selective sensing of zinc ions by turn-on emission and their liquid crystal properties. Photochemical and Photobiological Sciences, 2018, 17, 1386-1395.	2.9	10
36	Luminescent Coordination Polymers of Naphthalene Based Diamide with Rigid and Flexible Dicarboxylates: Sensing of Nitro Explosives, Fe(III) Ion, and Dyes. Crystal Growth and Design, 2018, 18, 3683-3692.	3.0	66

#	Article	IF	CITATIONS
37	Thermochromic, Solvatochromic, and Piezochromic Cd(II) and Zn(II) Coordination Polymers: Detection of Small Molecules by Luminescence Switching from Blue to Green. Crystal Growth and Design, 2018, 18, 6070-6077.	3.0	33
38	Supramolecular Organic Photocatalyst Containing a Cubanelike Water Cluster and Donor–Acceptor Stacks: Hydrogen Evolution and Dye Degradation under Visible Light. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29417-29424.	8.0	23
39	Porous Metalâ€Organic Polyhedral Framework containing Cuboctahedron Cages as SBUs with High Affinity for H ₂ and CO ₂ Sorption: A Heterogeneous Catalyst for Chemical Fixation of CO ₂ . Chemistry - A European Journal, 2018, 24, 10988-10993.	3.3	48
40	One-Dimensional Coordination Polymers of Bis(3-pyridyl-acrylamido)ethane: Influence of Anions and Metal lons on Their Solid State [2 + 2] Photochemical Polymerization and Dimerization Reactions. Crystal Growth and Design, 2017, 17, 925-932.	3.0	12
41	Two-Dimensional Coordination Polymers with "X―Shaped Cavities as Adsorbents of Oxoanion Pollutants and Toxic Dyes. Crystal Growth and Design, 2017, 17, 4437-4444.	3.0	38
42	MOFs with PCU Topology for the Inclusion of One-Dimensional Water Cages: Selective Sorption of Water Vapor, CO ₂ , and Dyes and Luminescence Properties. Crystal Growth and Design, 2017, 17, 3885-3892.	3.0	26
43	Anion and Guest Directed Tetracyclic Macrocycles of Ag ₅ L ₄ and Ag ₆ L ₄ with an Arc-Shaped Ligand Containing Pyridine and Benzimidazole Units: Reversal of Anion Selectivity by Guest. Crystal Growth and Design, 2017, 17, 5629-5633.	3.0	4
44	Co(II)-Doped Cd-MOF as an Efficient Water Oxidation Catalyst: Doubly Interpenetrated Boron Nitride Network with the Encapsulation of Free Ligand Containing Pyridine Moieties. ACS Applied Materials & 2017, 9, 37548-37553.	8.0	46
45	Hydrogen-bonded Two-fold Interpenetrated Diamondoid Networks for Solid-State [2 + 2] Polymerizations of Criss-crossed Olefins: Molecular Connections vs Supramolecular Connections. Crystal Growth and Design, 2017, 17, 5061-5064.	3.0	19
46	Metalâ \in "organic gels of silver salts with an \hat{l}_{\pm},\hat{l}^2 -unsaturated ketone: the influence of anions and solvents on gelation. Inorganic Chemistry Frontiers, 2017, 4, 1365-1373.	6.0	6
47	Waterâ€Resistant and Transparent Plastic Films from Functionalizable Organic Polymers: Coordination Polymers as Templates for Solidâ€State [2+2]â€Photopolymerization. Chemistry - A European Journal, 2017, 23, 273-277.	3.3	25
48	Tuning photophysical properties via guest inclusion in an organic salt. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C723-C723.	0.1	0
49	Supramolecular metallogelator: the pivotal role of aromatic solvents and anions. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C528-C528.	0.1	O
50	Crystal engineering of functional materials via halogen bonding. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C738-C738.	0.1	0
51	Silver gelation-promoted solid-state [2+2] reaction of unsymmetrical olefin-containing ligand. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C527-C527.	0.1	0
52	Tetracyclic macrocycles of M5L4 and M6L4. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C976-C976.	0.1	0
53	Solid-state [2+2] polymerization of a bis-olefinic molecule and luminescence property. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C975-C975.	0.1	0
54	Functionalizable organic polymers: coordination polymers as templates for solid-state [2+2] reaction. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C977-C977.	0.1	0

#	Article	IF	CITATIONS
55	Co ^{II} -doped metal–organic materials as efficient water oxidation catalysts. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C892-C892.	0.1	0
56	Role of Anions in the Formation of Multidimensional Coordination Polymers: Selective Separation of Anionic Toxic Dyes by 3D-Cationic Framework and Luminescent Properties. Crystal Growth and Design, 2016, 16, 3002-3013.	3.0	31
57	Separation of Xylene Isomers through Selective Inclusion: 1D → 2D, 1D → 3D, and 2D → 3D Assembled Coordination Polymers via β-Sheets. Crystal Growth and Design, 2016, 16, 5606-5611.	3.0	20
58	Porous Coordination Polymers Containing Pyridine-3,5-Bis(5-azabenzimidazole): Exploration of Water Sorption, Selective Dye Adsorption, and Luminescent Properties. Crystal Growth and Design, 2016, 16, 5976-5984.	3.0	42
59	Coordination Polymers of M ₂ L ₂ Macrocycles and M ₃ L ₂ Podands Containing Tris (pyridyl) Tripodal Amide: Anion Bridging, Agâ‹â‹â‹a‹a‹a‹a‹a‹	Ag1.5	1
60	Diversity in the Coordination Polymers of 2-(2-(Pyridin-4/3-yl)vinyl)-1 <i>H</i> -benzimidazole and Dicarboxylates/Disulfonates: Photochemical Reactivity and Luminescence Studies. Crystal Growth and Design, 2016, 16, 4457-4466.	3.0	28
61	Interplay of Pyridine Substitution and Ag(I)···Ag(I) and Ag(I)Â·Â·Â·Ã·Ē Interactions in Templating Photochemical Solid State [2 + 2] Reactions of Unsymmetrical Olefins Containing Amides: Single-Crystal-to-Single-Crystal Transformations of Coordination Polymers. Crystal Growth and Design, 2016, 16, 550-554.	3.0	26
62	Two-dimensional coordination polymers and metal–organic gels of symmetrical and unsymmetrical dipyridyl β-diketones: luminescence, dye absorption and mechanical properties. New Journal of Chemistry, 2016, 40, 1997-2006.	2.8	10
63	One-dimensional water cages with repeat units of (H ₂ 0) ₂₄ resembling pagodane trapped in a 3D coordination polymer: proton conduction and tunable luminescence emission by adsorption of anionic dyes. CrystEngComm, 2015, 17, 4439-4443.	2.6	35
64	China–India–Singapore Expanded to South and East Asia. Crystal Growth and Design, 2015, 15, 1-1.	3.0	3
65	Structural Adaptation of Ni ₄ O ₄ Units To Form Cubane, Open Dicubane, Dimeric Cubane, and One-Dimensional Polymeric Cubanes: Magnetostructural Correlation of Ni ₄ Clusters. Crystal Growth and Design, 2015, 15, 4132-4141.	3.0	18
66	Coordination Polymers Containing Tubular, Layered, and Diamondoid Networks: Redox, Luminescence, and Electron Paramagnetic Resonance Activities. Crystal Growth and Design, 2015, 15, 5604-5613.	3.0	35
67	Exploration and exploitation of homologous series of bis(acrylamido)alkanes containing pyridyl and phenyl groups: β-sheet <i>versus</i> two-dimensional layers in solid-state photochemical [2â€+â€2] reactions. IUCrJ, 2015, 2, 523-533.	2.2	8
68	Cocrystals and Salts of Pyridine-3,5-bis(1-methyl-benzimidazole-2-yl) with Pyromellitic Acid: Aromatic Guest Inclusion and Separation via Benzimidazole–Carboxylic Acid Heterosynthon. Crystal Growth and Design, 2015, 15, 318-325.	3.0	24
69	3D, 2D and 1D networks via N-Hâ√ O and N-Hâ√ N hydrogen bonding by the bis-amide analogues: Effect of chain lengths and odd-even spacers. Journal of Chemical Sciences, 2014, 126, 1285-1290.	1.5	7
70	Topological Equivalences between Coordination Polymer and Co-crystal: A Tecton Approach in Crystal Engineering. Crystal Growth and Design, 2014, 14, 419-422.	3.0	16
71	Modulation of breathing behavior of layered coordination polymers via a solid solution approach: the influence of metal ions on sorption behavior. Chemical Communications, 2014, 50, 670-672.	4.1	28
72	Coordination polymers of organic polymers synthesized via photopolymerization of single crystals: two-dimensional hydrogen bonding layers with amazing shock absorbing nature. Chemical Communications, 2014, 50, 3568-3570.	4.1	36

#	Article	IF	Citations
73	1D, 2D and 3D coordination polymers of 1,3-phenylene diisonicotinate with Cu(<scp>i</scp>)/Cu(<scp>ii</scp>): Cu ₂ ! ₂ building block, anion influence and guest inclusions. CrystEngComm, 2014, 16, 4701-4705.	2.6	31
74	Dynamic Layered Coordination Polymer: Adsorption and Separation of Aromatics and I ₂ by Single Crystals. Crystal Growth and Design, 2014, 14, 3696-3699.	3.0	22
75	Regiodivergent and short total synthesis of calothrixins. Organic and Biomolecular Chemistry, 2014, 12, 8196-8203.	2.8	17
76	Design, Synthesis, and Photoluminescence Properties of One-, Two-, and Three-Dimensional Coordination Polymers: Anion-Assisted Argentophillic Interactions as Building Blocks. Crystal Growth and Design, 2014, 14, 5164-5170.	3.0	23
77	Multifunctional White-Light-Emitting Metal–Organic Gels with a Sensing Ability of Nitrobenzene. ACS Applied Materials & Sensing Ability of Nitrobenzene.	8.0	63
78	Coordination Polymers Containing M ₂ L ₂ and M ₄ L ₄ Metallacylces of Bis(pyridylcarboxamido)alkanes with an Odd Number of â^²(CH ₂)– Groups as Spacers: Guest Inclusion and Networks Recognition via α Sheet. Crystal Growth and Design, 2013, 13, 4100-4109.	3.0	24
79	Exploration of Salts and Cocrystals of 2,2′,6,6′-Tetracarboxybiphenyl with Acetic Acid, Monobasic and Dibasic N-Heterocycles, and N-Oxides. Crystal Growth and Design, 2013, 13, 3232-3241.	3.0	16
80	In Honor of Professor Gautam R. Desiraju on the Occasion of His Sixtieth Birthday. Crystal Growth and Design, 2013, 13, 4151-4153.	3.0	0
81	Metal–organic gels and coordination networks of pyridine-3,5-bis(1-methyl-benzimidazole-2-yl) and metal halides: self sustainability, mechano, chemical responsiveness and gas and dye sorptions. CrystEngComm, 2013, 15, 9769.	2.6	46
82	Crystal engineering of topochemical solid state reactions. Chemical Society Reviews, 2013, 42, 950-967.	38.1	417
83	Does crystal or gel matter to stereochemistry of a reaction? Silver complexation-promoted solid-state [2+2] reaction of an unsymmetrical olefin. Chemical Communications, 2013, 49, 4181-4183.	4.1	39
84	Anion Influence in Directing and Altering the Stereochemistry of the Double [2+2] Reaction of Bisâ€Pyridyl Dienes in their Silver Complexes: A Green Synthetic Route. Chemistry - A European Journal, 2013, 19, 489-493.	3.3	35
85	Coordination Polymers of Silver(I) with the Flexible Tritopic Ligand 1,3,5-Tri(4-cyanophenoxy)benzene: Guest Inclusion and Luminescent Properties. Australian Journal of Chemistry, 2013, 66, 436.	0.9	4
86	Tunable Plastic Films of a Crystalline Polymer by Singleâ€Crystalâ€toâ€Singleâ€Crystal Photopolymerization of a Diene: Selfâ€Templating and Shockâ€Absorbing Twoâ€Dimensional Hydrogenâ€Bonding Layers. Angewandte Chemie - International Edition, 2013, 52, 5548-5551.	13.8	78
87	A Photoswitchable and Photoluminescent Organic Semiconductor Based On Cation–π and Carboxylate–Pyridinium Interactions: A Supramolecular Approach. Angewandte Chemie - International Edition, 2012, 51, 12012-12015.	13.8	64
88	Book Review of <i>The Importance of Pi-Interactions in Crystal Engineering </i> Design, 2012, 12, 5834-5834.	3.0	1
89	Influence of Solvents in Assembling Tris(4-halophenyl)benzene-1,3,5-tricarboxamides: Interplay of N–H···O and Halogen···Halogen Interactions. Crystal Growth and Design, 2012, 12, 5773-5782.	3.0	21
90	Polymorphs, Salts, and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 2147-2152.	3.0	767

#	Article	IF	Citations
91	Chemical and Mechano Responsive Metal–Organic Gels of Bis(benzimidazole)-Based Ligands with Cd(II) and Cu(II) Halide Salts: Self Sustainability and Gas and Dye Sorptions. Chemistry of Materials, 2012, 24, 1165-1173.	6.7	136
92	Design and Synthesis of Mixed Valent Coordination Networks Containing Pyridine Appended Terpyridyl, Halide, and Dicarboxylates. Crystal Growth and Design, 2012, 12, 4264-4274.	3.0	23
93	Post-synthetic modification of isomorphic coordination layers: exchange dynamics of metal ions in a single crystal to single crystal fashion. Chemical Communications, 2012, 48, 4293.	4.1	94
94	Correction for Polymorphs, Salts and Cocrystals: What's in a Name?. Crystal Growth and Design, 2012, 12, 4290-4291.	3.0	17
95	A facile Garratt–Braverman cyclization route to intercalative DNA-binding bis-quinones. Tetrahedron Letters, 2012, 53, 19-22.	1.4	15
96	Amino acid based low-molecular-weight tris(bis-amido) organogelators. Soft Matter, 2011, 7, 2121.	2.7	47
97	Separation of isomers of sulfophthalic acid by guest induced host framework formation with 4,4 \hat{a} €2-bipyridine. Chemical Communications, 2011, 47, 6614.	4.1	17
98	Two-Component Supramolecular Organic Hosts as Colorimetric Indicators for Aromatic Guests: Visual Molecular Recognition via Cationâ^ï∈ Interactions. Crystal Growth and Design, 2011, 11, 4120-4128.	3.0	22
99	Oddâ^'Even Effects: Diamondoid and Quartz Networks by Bis(pyridylcarboxamido)alkanes Containing Alkyl Chains with an Odd Number of -(CH ₂)- Groups as Spacers. Crystal Growth and Design, 2011, 11, 924-929.	3.0	28
100	Solid state double $[2+2]$ photochemical reactions in the co-crystal forms of 1,5-bis(4-pyridyl)-1,4-pentadiene-3-one: establishing mechanism using single crystal X-ray, UV and 1H NMR. CrystEngComm, 2011, 13, 3246.	2.6	53
101	Crystal Engineering Studies with Monocarboxamidoalkanes Having C- or N-Terminal Pyridine and Their Coordination Complexes. Crystal Growth and Design, 2011, 11, 5649-5658.	3.0	6
102	Recent Developments in Crystal Engineering. Crystal Growth and Design, 2011, 11, 875-886.	3.0	178
103	Weak AgâçAg and AgâçÏ€ interactions in templating regioselective single and double [2+2] reactions of N,N′-bis(3-(4-pyridyl)acryloyl)–hydrazine: synthesis of an unprecedented tricyclohexadecane ring system. Chemical Communications, 2011, 47, 10740.	4.1	51
104	Coordination Polymers of Flexible Bis(benzimidazole) Ligand: Halogen Bridging and Metal···Arene Interactions. Crystal Growth and Design, 2011, 11, 5723-5732.	3.0	20
105	Crystalline forms of 1,3,5-benzene-tri(pyridinyl)carboxamides: Isolated site hydrates as polymorphs and solvates. Journal of Molecular Structure, 2011, 991, 97-102.	3.6	10
106	Synthesis of Angularly Fused Aromatic Compounds from Alkenyl Enediynes by a Tandem Radical Cyclization Process. Angewandte Chemie - International Edition, 2011, 50, 8316-8319.	13.8	24
107	Assembling coordination networks of bis-amido pyridines via hydrogen bonds: isostructurality and large hydrophobic cavities for guest inclusion. New Journal of Chemistry, 2010, 34, 2415.	2.8	31
108	Assembling one-dimensional coordination polymers into three-dimensional architectures via hydrogen bonds. Journal of Chemical Sciences, 2010, 122, 707-720.	1.5	12

#	Article	IF	Citations
109	Crystal Engineering Studies on Ionic Crystals of Pyridine and Carboxylic Acid Derivatives Containing Amide Functional Groups. Australian Journal of Chemistry, 2010, 63, 578.	0.9	11
110	Supramolecular Assembly of Protonated Xanthine Alkaloids in Their Perchlorate Salts. Crystal Growth and Design, 2010, 10, 937-942.	3.0	21
111	Nitrate Ion Assisted Argentophilic Interactions as a Template for Solid State [2 + 2] Photodimerization of Pyridyl Acrylic Acid, Its Methyl Ester, and Acryl Amide. Crystal Growth and Design, 2010, 10, 3315-3320.	3.0	67
112	Carboxylic Acid and Phenolic Hydroxyl Interactions in the Crystal Structures of Co-Crystals/Clathrates of Trimesic Acid and Pyromellitic Acid with Phenolic Derivatives. Crystal Growth and Design, 2010, 10, 4565-4570.	3.0	26
113	Assembling triple helical amide-to-amide hydrogen bonded columns of tris(4-halophenyl)benzene-1,3,5-tricarboxamides into porous materials via halogenâ <halogen 2010,="" 46,="" 6530.<="" chemical="" communications,="" interactions.="" td=""><td>4.1</td><td>40</td></halogen>	4.1	40
114	Introduction to the themed issue "Coordination polymers: structure and function― New Journal of Chemistry, 2010, 34, 2353.	2.8	18
115	Coordination Polymers Versus Metalâ°'Organic Frameworks. Crystal Growth and Design, 2009, 9, 2969-2970.	3.0	237
116	Reliable Formation of an Unusual and Chiral Two-Dimensional Network Containing Entanglement of the Ligand in the Presence of Different Anions. Crystal Growth and Design, 2009, 9, 3848-3851.	3.0	23
117	Design of Cocrystals via New and Robust Supramolecular Synthon between Carboxylic Acid and Secondary Amide: Honeycomb Network with Jailed Aromatics. Crystal Growth and Design, 2009, 9, 40-42.	3.0	49
118	Two-Dimensional Organic Brick-Wall Layers as Hosts for the Inclusion and Study of Aromatics Ensembles: Acidâ^'Pyridine and Acidâ^'Carbonyl Synthons for Multicomponent Materials. Crystal Growth and Design, 2009, 9, 4969-4978.	3.0	41
119	Robust hydrogen bonding synthon in one-dimensional and two-dimensional coordination polymers of pyridine-appended reverse amides and amides. CrystEngComm, 2009, 11, 1220.	2.6	39
120	Halogenâ $^{-}$ halogen interactions in assembling \hat{l}^2 -sheets into 2D layers in the bis-(4-halo-phenylamido)alkanes and their co-crystals via inter-halogen interactions. CrystEngComm, 2009, 11, 482-492.	2.6	43
121	Cocrystal and Salts of 2,2′,6,6′-Tetracarboxybiphenyl with Bis(pyridyl) Derivatives: Eight-fold Interpenetrated Diamondoid and Layered Networks. Crystal Growth and Design, 2009, 9, 5006-5008.	3.0	47
122	Asymmetric cyclopropanation using amino acid as chiral auxiliary. Tetrahedron: Asymmetry, 2008, 19, 2678-2681.	1.8	8
123	Design and synthesis of coordination networks containing amide, pyridine and carboxylate functionalities. Polyhedron, 2008, 27, 1248-1255.	2.2	15
124	Three crystalline forms of 1,3,5-benzene-tri(3-pyridinyl)carboxamide from the same solvent system. Journal of Molecular Structure, 2008, 876, 339-343.	3.6	15
125	Stepwise dimerization of double [2 + 2] reaction in the co-crystals of 1,5-bis(4-pyridyl)-1,4-pentadiene-3-one and phloroglucinol: a single-crystal to single-crystal transformation. CrystEngComm, 2008, 10, 1524.	2.6	55
126	Crystal engineering with acid and pyridine heteromeric synthon: neutral and ionic co-crystals. New Journal of Chemistry, 2008, 32, 1673.	2.8	63

#	Article	IF	CITATIONS
127	Design, synthesis and DNA-cleaving efficiency of photoswitchable dimeric azobenzene-based C2-symmetric enediynes. Chemical Communications, 2008, , 3067.	4.1	19
128	Effect of Substituents on Molecular Geometry and Self-Aggregation in the Crystal Structures of Ethylenediamine- <i>N</i> , <i>N</i>	3.0	7
129	Bimetallic Clusters of Pyridine-Appended Ethylenediaminetetraacetic Acid (EDTA)-amides in Designing 1D and 2D Coordination Frameworks. Crystal Growth and Design, 2007, 7, 2376-2379.	3.0	15
130	Comparative Structural Studies on Homologues of Amides and Reverse Amides: Unprecedented 4-fold Interpenetrated Quartz Network, New Î ² -Sheet, and Two-Dimensional Layers. Crystal Growth and Design, 2007, 7, 2788-2795.	3.0	58
131	Hydrogen bonding adducts of octamolybdate anions containing coordinately bound pyridiniumoxides. Inorganica Chimica Acta, 2007, 360, 281-285.	2.4	8
132	Crystal Engineering of Metalâ^'Organic Frameworks Containing Amide Functionalities:Â Studies on Network Recognition, Transformations, and Exchange Dynamics of Guests and Anions. Crystal Growth and Design, 2007, 7, 1318-1331.	3.0	85
133	Amide-to-Amide Hydrogen Bonds in the Presence of a Pyridine Functionality:  Crystal Structures of Bis(pyridinecarboxamido)alkanes. Crystal Growth and Design, 2006, 6, 202-208.	3.0	148
134	Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal atoms. Chemical Communications, 2006, , 4169-4179.	4.1	480
135	Interplay of Hydrogen Bonds in Assembling (4,4)-Coordination Networks:  Transformations from Open to Interpenetrated Networks via Anion Exchange. Crystal Growth and Design, 2006, 6, 1742-1745.	3.0	44
136	Dynamic Self-Assembly of an M3L6 Molecular Triangle and an M4L8 Tetrahedron from Naked PdII Ions and Bis(3-pyridyl)-Substituted Arenes. Chemistry - an Asian Journal, 2006, 1, 82-90.	3.3	123
137	Entrapment of a Hexamer of Nitrobenzene Molecules between the Layers of (4,4)-Coordination Networks Containing Intra-Î ² -Sheet Hydrogen Bonds. European Journal of Inorganic Chemistry, 2006, 2006, 531-534.	2.0	16
138	(2S,7R,11S,16R)-1,8,10,17-Tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosane and its enantiomer. Synthesis, NMR analysis and X-ray crystal structure. Journal of Molecular Structure, 2005, 749, 78-83.	3.6	11
139	Self-Assembly of an Alkali Metal Cluster Stabilized by a New Flexidentate Metalloligand: Formation and Structure of Heterobimetallic Na-Mo and Cs-Mo 2D Networks. European Journal of Inorganic Chemistry, 2005, 2005, 5005-5010.	2.0	11
140	\hat{l}^2 -sheet recognition in the non-interpenetrated and interpenetrated two-dimensional coordination networks containing cavities. Chemical Communications, 2005, , 2229.	4.1	86
141	Enclathration of Aromatic Molecules by the Oâ^'H···N Supramolecular Adducts of Racemic-bis-β-naphthol and 4,4 -Bipyridine. Crystal Growth and Design, 2005, 5, 61-63.	3.0	85
142	A 3D-Honeycomb Network with Unique Encapsulation of Dimers of 1D-Chains. Crystal Growth and Design, 2005, 5, 49-51.	3.0	25
143	Central imidazolidine ring hydrolysis of a binucleating amine phenol ligand during complex formation with manganese(III): synthesis, structure and electron transfer properties of mononuclear MnN4O2 complex. Inorganica Chimica Acta, 2004, 357, 3556-3562.	2.4	26
144	A circular tris[2]catenane from molecular †figure-of-eight'. Chemical Communications, 2004, , 1798-1799.	4.1	40

#	Article	IF	CITATIONS
145	Coordination polymers of Ag(i) with di-Schiff base and diaminoalkanes: double helix, ladder, CdSO4 and zigzag-chain networksElectronic supplementary information (ESI) available: Fractional coordinates, full list of bond lengths, angles, anisotropic displacement parameters and ORTEP drawings. See http://www.rsc.org/suppdata/ce/b4/b412903b/. CrystEngComm, 2004, 6, 310.	2.6	32
146	Multicomponent Assembly of a Pyrazine-Pillared Coordination Cage That Selectively Binds Planar Guests by Intercalation. Angewandte Chemie - International Edition, 2003, 42, 3909-3913.	13.8	211
147	Crystal engineering: from weak hydrogen bonds to co-ordination bonds. CrystEngComm, 2003, 5, 374.	2.6	321
148	Metal driven self-assembly of pyridine appended ligands with cis-protected/naked Pd(ii) ion: a comparative study. Dalton Transactions, 2003, , 2750.	3.3	55
149	Side chain-directed assembly of triangular molecular panels into a tetrahedron vs. open coneElectronic supplementary information (ESI) available: physical properties of open cone 4 with mesitylene and CBr4. See http://www.rsc.org/suppdata/cc/b3/b305129c/. Chemical Communications, 2003, . 1808.	4.1	68
150	Layered Materials by Design: 2D Coordination Polymeric Networks Containing Large Cavities/Channels. Perspectives in Supramolecular Chemistry, 2003, , 211-239.	0.1	3
151	Chiral Noninterpenetrated (10,3)-a Net in the Crystal Structure of Ag(I) and Bisthioether. Inorganic Chemistry, 2002, 41, 437-439.	4.0	127
152	A Chiral M6L4Cage Complex Assembled from aD2h-Symmetric Ligand: Self-Assembly, Structure, and Chirality Observation. Bulletin of the Chemical Society of Japan, 2002, 75, 559-565.	3.2	24
153	A Novel Two-Dimensional Non-Interpenetrating Coordination Polymer [Ag2.5L(NO3)2.5]â^ž with three different coordination modes of AgI (L = diquinoxalino[2,3-a:2′,3′-c]phenazine). Journal of Chemical Research, 2002, 2002, 493-495.	1.3	3
154	Spectroscopic and crystallographic studies on the stability of self-assembled coordination nanotubes. Chemical Communications, 2002, , 2036-2037.	4.1	30
155	A molecular sphere of octahedral symmetry. Chemical Communications, 2002, , 2486-2487.	4.1	97
156	A â€~three-in-one' crystal of coordination networks. Chemical Communications, 2002, , 1866-1867.	4.1	83
157	Title is missing!. Angewandte Chemie, 2002, 114, 3542-3545.	2.0	98
158	Crystal-to-Crystal Sliding of 2D Coordination Layers Triggered by Guest Exchange. Angewandte Chemie, 2002, 114, 3545-3548.	2.0	55
159	Chirality Induction through the Reversible Catenation of Coordination Rings. Angewandte Chemie - International Edition, 2002, 41, 3269-3272.	13.8	76
160	A Springlike 3D-Coordination Network That Shrinks or Swells in a Crystal-to-Crystal Manner upon Guest Removal or Readsorption. Angewandte Chemie - International Edition, 2002, 41, 3392-3395.	13.8	416
161	Crystal-to-Crystal Sliding of 2D Coordination Layers Triggered by Guest Exchange. Angewandte Chemie - International Edition, 2002, 41, 3395-3398.	13.8	311
162	[5-Amino-6,8-dichloro-2,3-bis(2-pyridyl)quinoxaline]dichlorozinc(II). Acta Crystallographica Section E: Structure Reports Online, 2002, 58, m436-m438.	0.2	2

#	Article	IF	CITATIONS
163	Crystal-to-Crystal Sliding of 2D Coordination Layers Triggered by Guest Exchange. , 2002, 41, 3395.		2
164	Molecular paneling via coordination. Chemical Communications, 2001, , 509-518.	4.1	823
165	Selective formation of rectangular grid coordination polymers with grid dimensions 10 \tilde{A} — 15, 10 \tilde{A} — 20 and 15 \tilde{A} — 20 \tilde{A} Chemical Communications, 2001, , 15-16.	4.1	124
166	Self-assembly of a novel macrotricyclic Pd(ii) metallocage encapsulating a nitrate ion. Chemical Communications, 2001, , 1652-1653.	4.1	118
167	A large delocalized π-electron system: diquinoxalino[2,3-a:2′,3′-c]phenazine chloroform solvate. Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 199-200.	0.4	12
168	A Porphyrin Prism: Structural Switching Triggered by Guest Inclusion. Angewandte Chemie - International Edition, 2001, 40, 1718-1721.	13.8	154
169	Molecular Paneling by Coordination: An M15L6 Hexahedral Molecular Capsule having Clefts for Reversible Guest Inclusion. Angewandte Chemie - International Edition, 2001, 40, 2620-2622.	13.8	60
170	Title is missing!. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 41, 201-208.	1.6	23
171	Molecular Paneling by Coordination: An M(15)L(6) Hexahedral Molecular Capsule having Clefts for Reversible Guest Inclusion. Angewandte Chemie - International Edition, 2001, 40, 2620-2622.	13.8	0
172	Formation of Two, One, and Zero-Dimensional Coordination Assemblies from Cd(II) Ion and 4,4′-Bipyridine. Bulletin of the Chemical Society of Japan, 2000, 73, 1369-1373.	3.2	42
173	Encapsulation of Two Types of Chloroform Dimers in the Cavities of a Coordination Polymer. Chemistry Letters, 2000, 29, 350-351.	1.3	2
174	Open Squareâ€Grid Coordination Polymers of the Dimensions 20×20â€Ã: Remarkably Stable and Crystalline Solids Even after Guest Removal. Angewandte Chemie - International Edition, 2000, 39, 3843-3845.	13.8	324
175	Steric and Electronic Influences in Os3(CO)11(PR3) Structures. Journal of Cluster Science, 2000, 11, 285-306.	3.3	31
176	Co-ordination polymers containing square grids of dimension 15â€Ã—â€15 Ã â€. Dalton Transactions RSc 2000, , 3805-3810.	2. 3	102
177	Trans alkenylpyridine and alkenylamine complexes of platinum. Canadian Journal of Chemistry, 2000, 78, 568-576.	1.1	29
178	A novel polymeric Agl complex consisting of two three-dimensional networks which are enantiometric and interpenetrating. Chemical Communications, 2000, , 1953-1954.	4.1	45
179	Coexisting covalent and non-covalent planar networks in the crystal structures of {[M(bipy)2(NO3)2]·arene}n (Mâ€=â€Ni, 1; Co, 2; areneâ€=â€chlorobenzene, o-dichlorobenzene, benzen	ආ 3j ETQ(q å &l 0.78 <mark>4</mark> 3
180	A spontaneously resolved chiral molecular box: a cyclic tetranuclear ZnII complex with DPTZ (DPTZ =) Tj ETQq0 0 C	rgBT /Ov	erlock 10 Tf

#	Article	lF	Citations
181	Coordination Polytubes with the Affinity for Guest Inclusion. Journal of the American Chemical Society, 2000, 122, 2397-2398.	13.7	61
182	Compounds with Unbridged Dative Metalâ^'Metal Bonds of Formula (R3P)2(OC)3OsW(CO)5and Related Complexes. Organometallics, 2000, 19, 5049-5062.	2.3	21
183	Hydrophobic Assembling of a Coordination Nanobowl into a Dimeric Capsule Which Can Accommodate up to Six Large Organic Molecules. Journal of the American Chemical Society, 2000, 122, 2665-2666.	13.7	133
184	Molecular self-assemblies through coordination. Advances in Supramolecular Chemistry, 2000, , 1-39.	1.8	27
185	Dicarbonylcyclopentadienyliridium, (ÎC ₅ H ₅)Ir(CO) ₂ , as a ligand. Canadian Journal of Chemistry, 1999, 77, 1327-1335.	1.1	12
186	Interpenetrating covalent and noncovalent nets in the crystal structures of [M(4,4′-bipyridine)2(NO3)2]·3C10H8 (M = Co, Ni). Crystal Engineering, 1999, 2, 37-45.	0.7	20
187	Crystal structure of 1,3-di-2-[(4-methoxyphenyl)-1-diazenyl]imidazolidine. Journal of Chemical Crystallography, 1999, 29, 1037-1041.	1.1	3
188	Crystal structures of a series of 3,8-di[-2-aryl-1-azenyl]-1,3,6,8-tetraazabicyclo[4.4.1]undecanes. Journal of Chemical Crystallography, 1999, 29, 145-156.	1.1	10
189	Helical Coordination Polymers with Large Chiral Cavities. Angewandte Chemie - International Edition, 1999, 38, 492-495.	13.8	371
190	Tetranuclear Copper(II) and Nickel(II) Cluster Complexes Derived by Self-Assembly from a Series of Tetradentate Diazine Ligands:Â Structural and Magnetic Studies. Inorganic Chemistry, 1999, 38, 5266-5276.	4.0	142
191	A novel pentamanganese(II) cluster produced by a controlled self assembly process; an exact match between the coordination algorithm of the metals and the ligand binding site arrangement. Chemical Communications, 1999, , 347-348.	4.1	33
192	Crystal structures of dihydroquercetin 3-acetate and dihydroquercetin 3,3'4',7-tetraacetate: hydrogen bonding in 5-hydroxyflavanones. Canadian Journal of Chemistry, 1999, 77, 1436-1443.	1.1	7
193	Stepwise Complexation of Ni(II) and Cu(II) lons by 6,6 -C-spirobi(cyclam) (cyclam =) Tj ETQq1 1 0.784314 rgBT [Cu2(L1)]X4, and [CuNi(L1)]X4(X = ClO4-) and the X-ray Crystal Structure of [Cu2(L1)](ClO4)4. Inorganic Chemistry, 1999, 38, 5078-5085.	/Overlock 4.0	10 Tf 50 27 15
194	Reactions of aminoboron compounds with palladium and platinum complexes. Canadian Journal of Chemistry, 1999, 77, 1196-1207.	1.1	20
195	Quantitative Formation of Coordination Nanotubes Templated by Rodlike Guests. Journal of the American Chemical Society, 1999, 121, 7457-7458.	13.7	274
196	Novel Nanoporous Coordination Polymer Sustained by Self-Assembly of T-Shaped Moieties. Journal of the American Chemical Society, 1999, 121, 2599-2600.	13.7	288
197	Covalent and noncovalent interpenetrating planar networks in the crystal structure of {[Ni(4,4′-bipyridine)2(NO3)2·2pyrene}n. Chemical Communications, 1999, , 1327-1328.	4.1	132
198	Pd(II)- and Pt(II)-Linked Tetranuclear Complexes as Assembly Units for Higher Ordered Structures. Bulletin of the Chemical Society of Japan, 1999, 72, 2603-2606.	3.2	24

#	Article	IF	Citations
199	Supramolecular Synthesis of Organic and Metal-Organic Laminates with Affinity for Aromatic Guests: Hydrophobic Clay Mimics., 1999,, 115-132.		3
200	Crystal structures of a series of 3,7-bis-(arylazo)-1,3,5,7-tetraazabicyclo[3.3.1]nonanes. Journal of Chemical Crystallography, 1998, 28, 797-809.	1.1	5
201	A Supramolecular Analogue of Cyclohexane Sustained by Aromatic Câ^'HÂ∙··π Interactions: Complexes of 1,3,5-Trihydroxybenzene with Substituted Pyridines. Journal of the American Chemical Society, 1998, 120, 6431-6432.	13.7	116
202	Supramolecular Isomerism and Polymorphism in Dianion Salts of Pyromellitic Acid. Crystal Engineering, 1998, 1, 67-78.	0.7	51
203	Flexible bilayer architectures in the coodination polymers [MII(NO3)2(1,2-BIS(4-pyridyl)ethane)1.5]n (MII) Tj ETQ	q1 _{0.7} 0.78	43 <u>1</u> 4 rgBT
204	Complexes Containing Unbridged Dative Metalâ [^] Metal Bonds and the Strong Acceptor Ru(CO)3(SiCl3)2Moiety. Comments on the Transition Metal to Silicon Bond. Organometallics, 1998, 17, 5810-5819.	2.3	37
205	Conformational Isomerism in Triosmium Clusters:  Structures of Yellow and Red Os3(CO)11[P(p-C6H4F)3] and Os3(CO)11(PBut3). Organometallics, 1998, 17, 5267-5274.	2.3	28
206	Supramolecular Synthesis of Organic Laminates with Affinity for Aromatic Guests:Â A New Class of Clay Mimics. Journal of the American Chemical Society, 1998, 120, 11894-11903.	13.7	169
207	C–HLO Hydrogen bonded multi-point recognition in molecular assemblies of dibenzylidene ketones and 1,3,5-trinitrobenzenes. Journal of Materials Chemistry, 1997, 7, 1111-1122.	6.7	28
208	Hydrogen Bonding in Organometallic Crystals. 6.â€Xâ^'HM Hydrogen Bonds and M(Hâ^'X) Pseudo-Agostic Bonds. Organometallics, 1997, 16, 1846-1856.	2.3	309
209	Design of an SHG-active crystal, 4-iodo-4â \in 2-nitrobiphenyl: the role of supramolecular synthons. Chemical Communications, 1997, , 101-102.	4.1	71
210	Correlation of biological activity in β-lactam antibiotics with Woodward and Cohen structural parametersâ€"a Cambridge database study. Journal of the Chemical Society Perkin Transactions II, 1996, , 943-953.	0.9	34
211	Hydrogen Bonding in Organometallic Crystals. 3.1Transition-Metal Complexes Containing Amido Groups. Organometallics, 1996, 15, 1284-1295.	2.3	62
212	Hydrogen Bonding in Organometallic Crystals. 4.â€Mâ^'H-Â-Â-O Hydrogen-Bonding Interactions. Organometallics, 1996, 15, 2692-2699.	2.3	57
213	Agostic interactions in organometallic compounds. A Cambridge Structural Database study. Journal of the Chemical Society Dalton Transactions, 1996, , 3925.	1.1	77
214	Hydrogen bonding in organometallic and metal-organic crystals. Transition metal amido complexes. Journal of Chemical Sciences, 1996, 108, 322-322.	1.5	0
215	Hydrogen Bonding in Organometallic Crystals. 2. C-H.cntdotcntdotcntdot.O Hydrogen Bonds in Bridged and Terminal First-Row Metal Carbonyls. Journal of the American Chemical Society, 1995, 117, 3156-3166.	13.7	265
216	(4-Dimethylaminopyridine)5(benzoic acid)3(H2O)10: a two-dimensional clathrate hydrate. Journal of the Chemical Society Chemical Communications, 1995, , 1705.	2.0	10

#	Article	IF	CITATIONS
217	Solid-state supramoecular assembly via $C\hat{a}\in H\hat{a}^-$ O hydrogen bonds: crystal structures of the complexes of 1,3,5-trinitrobenzene with dibenzylideneacetone and 2,5-dibenzylidenecyclopentanone. Journal of the Chemical Society Chemical Communications, 1993, , 1473-1475.	2.0	34
218	Crystal Engineering with Molecules Containing Amide and Pyridine Functionalities., 0,, 215-238.		2
219	Halogenâ‹â‹â‹Halogen and Halogenâ‹â‹ä‹ï€ Interactions Enabled Reversible Photoâ€oligomerization Dienones: Visible Light Triggered Singleâ€Crystalâ€toâ€Singleâ€Crystal Transformation. Angewandte Chemie, 0, , .	of Conjuga 2.0	ated 2