Miriam Melis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2218186/publications.pdf

Version: 2024-02-01

66343 69250 6,309 86 42 77 citations h-index g-index papers 90 90 90 6099 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Special issue editorial: Cannabinoid signalling in the brain: New vistas. European Journal of Neuroscience, 2022, 55, 903-908.	2.6	1
2	Use of Marijuana: Effect on Brain Health: A Scientific Statement From the American Heart Association. Stroke, 2022, 53, STR0000000000000396.	2.0	16
3	Choosing the right drug: status and future of endocannabinoid research for the prevention of drug-seeking reinstatement. Current Opinion in Pharmacology, 2021, 56, 29-38.	3.5	8
4	Exercise craving potentiates excitatory inputs to ventral tegmental area dopaminergic neurons. Addiction Biology, 2021, 26, e12967.	2.6	10
5	Mesolimbic dopamine dysregulation as a signature of information processing deficits imposed by prenatal THC exposure. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110128.	4.8	20
6	Prenatal THC Does Not Affect Female Mesolimbic Dopaminergic System in Preadolescent Rats. International Journal of Molecular Sciences, 2021, 22, 1666.	4.1	17
7	COR758, a negative allosteric modulator of GABAB receptors. Neuropharmacology, 2021, 189, 108537.	4.1	6
8	Selective inhibition of phosphodiesterase 7 enzymes reduces motivation for nicotine use through modulation of mesolimbic dopaminergic transmission. Journal of Neuroscience, 2021, , JN-RM-3180-20.	3.6	3
9	Repurposing Peroxisome Proliferator-Activated Receptor Agonists in Neurological and Psychiatric Disorders. Pharmaceuticals, 2021, 14, 1025.	3.8	13
10	Role of genetic background in the effects of adolescent nicotine exposure on mesolimbic dopamine transmission. Addiction Biology, 2020, 25, e12803.	2.6	7
11	Gender Differences in the Outcome of Offspring Prenatally Exposed to Drugs of Abuse. Frontiers in Behavioral Neuroscience, 2020, 14, 72.	2.0	19
12	Conjugated Linoleic Acid and Brain Metabolism: A Possible Anti-Neuroinflammatory Role Mediated by PPARα Activation. Frontiers in Pharmacology, 2020, 11, 587140.	3.5	22
13	Cannabis and the Developing Brain: Insights into Its Long-Lasting Effects. Journal of Neuroscience, 2019, 39, 8250-8258.	3.6	124
14	Consequences of Perinatal Cannabis Exposure. Trends in Neurosciences, 2019, 42, 871-884.	8.6	75
15	Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nature Neuroscience, 2019, 22, 1975-1985.	14.8	93
16	Dysfunctional mesocortical dopamine circuit at pre-adolescence is associated to aggressive behavior in MAO-A hypomorphic mice exposed to early life stress. Neuropharmacology, 2019, 159, 107517.	4.1	16
17	Astrocytic Mechanisms Involving Kynurenic Acid Control Δ9-Tetrahydrocannabinol-Induced Increases in Glutamate Release in Brain Reward-Processing Areas. Molecular Neurobiology, 2019, 56, 3563-3575.	4.0	20
18	The PPARÎ \pm agonist fenofibrate attenuates disruption of dopamine function in a maternal immune activation rat model of schizophrenia. CNS Neuroscience and Therapeutics, 2019, 25, 549-561.	3.9	25

#	Article	IF	Citations
19	Gene-environment interactions in antisocial behavior are mediated by early-life 5-HT2A receptor activation. Neuropharmacology, 2019, 159, 107513.	4.1	30
20	Rimonabant, a potent CB1 cannabinoid receptor antagonist, is a $\widehat{Gl}\pm i/o$ protein inhibitor. Neuropharmacology, 2018, 133, 107-120.	4.1	21
21	New vistas on cannabis use disorder. Neuropharmacology, 2017, 124, 62-72.	4.1	33
22	Rehabilitating the addicted brain with transcranial magnetic stimulation. Nature Reviews Neuroscience, 2017, 18, 685-693.	10.2	184
23	Rationale for an adjunctive therapy with fenofibrate in pharmacoresistant nocturnal frontal lobe epilepsy. Epilepsia, 2017, 58, 1762-1770.	5.1	32
24	Altered Chloride Homeostasis Decreases the Action Potential Threshold and Increases Hyperexcitability in Hippocampal Neurons. ENeuro, 2017, 4, ENEURO.0172-17.2017.	1.9	24
25	Editorial: Exploring Gender and Sex Differences in Behavioral Dyscontrol: From Drug Addiction to Impulse Control Disorders. Frontiers in Psychiatry, 2016, 7, 19.	2.6	8
26	Sex differences in impulsive and compulsive behaviors: a focus on drug addiction. Addiction Biology, 2016, 21, 1043-1051.	2.6	50
27	PPARα modulation of mesolimbic dopamine transmission rescues depression-related behaviors. Neuropharmacology, 2016, 110, 251-259.	4.1	48
28	Maternal Immune Activation Disrupts Dopamine System in the Offspring. International Journal of Neuropsychopharmacology, 2016, 19, pyw007.	2.1	58
29	Interactions between the endocannabinoid and nicotinic cholinergic systems: preclinical evidence and therapeutic perspectives. Psychopharmacology, 2016, 233, 1765-1777.	3.1	39
30	Endocannabinoid Signaling in Motivation, Reward, and Addiction. International Review of Neurobiology, 2015, 125, 257-302.	2.0	38
31	Key role of salsolinol in ethanol actions on dopamine neuronal activity of the posterior ventral tegmental area. Addiction Biology, 2015, 20, 182-193.	2.6	39
32	PPAR \hat{I}^3 Activation Attenuates Opioid Consumption and Modulates Mesolimbic Dopamine Transmission. Neuropsychopharmacology, 2015, 40, 927-937.	5.4	67
33	Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain. Neuropharmacology, 2015, 97, 383-393.	4.1	68
34	Stimulation of inÂvivo dopamine transmission and intravenous self-administration in rats and mice by JWH-018, a Spice cannabinoid. Neuropharmacology, 2015, 99, 705-714.	4.1	65
35	Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nature Neuroscience, 2015, 18, 75-86.	14.8	205
36	Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiology of Disease, 2015, 73, 60-69.	4.4	150

#	Article	IF	CITATIONS
37	Individual Differences and Vulnerability to Drug Addiction: A Focus on the Endocannabinoid System. CNS and Neurological Disorders - Drug Targets, 2015, 14, 502-517.	1.4	12
38	Enhanced Endocannabinoid-Mediated Modulation of Rostromedial Tegmental Nucleus Drive onto Dopamine Neurons in Sardinian Alcohol-Preferring Rats. Journal of Neuroscience, 2014, 34, 12716-12724.	3.6	47
39	Interplay between synaptic endocannabinoid signaling and metaplasticity in neuronal circuit function and dysfunction. European Journal of Neuroscience, 2014, 39, 1189-1201.	2.6	27
40	Sex differences in addictive disorders. Frontiers in Neuroendocrinology, 2014, 35, 272-284.	5.2	211
41	Targeting the interaction between fatty acid ethanolamides and nicotinic receptors: Therapeutic perspectives. Pharmacological Research, 2014, 86, 42-49.	7.1	22
42	Optogenetic inhibition of chemically induced hypersynchronized bursting in mice. Neurobiology of Disease, 2014, 65, 133-141.	4.4	44
43	PPARα Regulates Cholinergic-Driven Activity of Midbrain Dopamine Neurons via a Novel Mechanism Involving α7 Nicotinic Acetylcholine Receptors. Journal of Neuroscience, 2013, 33, 6203-6211.	3.6	79
44	PPAR-Alpha Agonists as Novel Antiepileptic Drugs: Preclinical Findings. PLoS ONE, 2013, 8, e64541.	2.5	41
45	Physiological Role of Peroxisome Proliferator-Activated Receptors Type Alpha on Dopamine Systems. CNS and Neurological Disorders - Drug Targets, 2013, 12, 70-77.	1.4	48
46	Sex-specific tonic 2-arachidonoylglycerol signaling at inhibitory inputs onto dopamine neurons of Lister Hooded rats. Frontiers in Integrative Neuroscience, 2013, 7, 93.	2.1	47
47	Inhibitory Inputs from Rostromedial Tegmental Neurons Regulate Spontaneous Activity of Midbrain Dopamine Cells and Their Responses to Drugs of Abuse. Neuropsychopharmacology, 2012, 37, 1164-1176.	5.4	159
48	Hub and switches: endocannabinoid signalling in midbrain dopamine neurons. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3276-3285.	4.0	66
49	NMDARs Mediate the Role of Monoamine Oxidase A in Pathological Aggression. Journal of Neuroscience, 2012, 32, 8574-8582.	3.6	47
50	Endocannabinoids and the Processing of Value-Related Signals. Frontiers in Pharmacology, 2012, 3, 7.	3.5	29
51	Effects of Drugs of Abuse on Putative Rostromedial Tegmental Neurons, Inhibitory Afferents to Midbrain Dopamine Cells. Neuropsychopharmacology, 2011, 36, 589-602.	5.4	135
52	From Surface to Nuclear Receptors: The Endocannabinoid Family Extends its Assets. Current Medicinal Chemistry, 2010, 17, 1450-1467.	2.4	128
53	Peroxisome Proliferator-Activated Receptors-Alpha Modulate Dopamine Cell Activity Through Nicotinic Receptors. Biological Psychiatry, 2010, 68, 256-264.	1.3	92
54	The endocannabinoid system and nondrug rewarding behaviours. Experimental Neurology, 2010, 224, 23-36.	4.1	78

#	Article	IF	Citations
55	Electrophysiological properties of dopamine neurons in the ventral tegmental area of Sardinian alcohol-preferring rats. Psychopharmacology, 2009, 201, 471-481.	3.1	34
56	Ethanol and acetaldehyde action on central dopamine systems: mechanisms, modulation, and relationship to stress. Alcohol, 2009, 43, 531-539.	1.7	56
57	Strain Specific Synaptic Modifications on Ventral Tegmental Area Dopamine Neurons After Ethanol Exposure. Biological Psychiatry, 2009, 65, 646-653.	1.3	42
58	Crucial Role of Acetaldehyde in Alcohol Activation of the Mesolimbic Dopamine System. Annals of the New York Academy of Sciences, 2008, 1139, 307-317.	3.8	39
59	Endogenous Fatty Acid Ethanolamides Suppress Nicotine-Induced Activation of Mesolimbic Dopamine Neurons through Nuclear Receptors. Journal of Neuroscience, 2008, 28, 13985-13994.	3.6	164
60	Endocannabinoid Signaling in Midbrain Dopamine Neurons: More than Physiology?. Current Neuropharmacology, 2007, 5, 268-277.	2.9	41
61	Acetaldehyde mediates alcohol activation of the mesolimbic dopamine system. European Journal of Neuroscience, 2007, 26, 2824-2833.	2.6	91
62	Medial forebrain bundle stimulation evokes endocannabinoid-mediated modulation of ventral tegmental area dopamine neuron firing in vivo. Psychopharmacology, 2007, 191, 843-853.	3.1	31
63	Cannabinoids modulate spontaneous neuronal activity and evoked inhibition of locus coeruleus noradrenergic neurons. European Journal of Neuroscience, 2006, 23, 2385-2394.	2.6	109
64	Protective activation of the endocannabinoid system during ischemia in dopamine neurons. Neurobiology of Disease, 2006, 24, 15-27.	4.4	89
65	Involvement of the endogenous cannabinoid system in the effects of alcohol in the mesolimbic reward circuit: electrophysiological evidence in vivo. Psychopharmacology, 2005, 183, 368-377.	3.1	71
66	The Dopamine Hypothesis of Drug Addiction: Hypodopaminergic State. International Review of Neurobiology, 2005, 63, 101-154.	2.0	228
67	\hat{I}^3 -Hydroxybutyric acid (GHB) and the mesoaccumbens reward circuit: Evidence for GABAB receptor-mediated effects. Neuroscience, 2005, 131, 465-474.	2.3	30
68	Prefrontal Cortex Stimulation Induces 2-Arachidonoyl-Glycerol-Mediated Suppression of Excitation in Dopamine Neurons. Journal of Neuroscience, 2004, 24, 10707-10715.	3.6	232
69	Endocannabinoids Mediate Presynaptic Inhibition of Glutamatergic Transmission in Rat Ventral Tegmental Area Dopamine Neurons through Activation of CB1 Receptors. Journal of Neuroscience, 2004, 24, 53-62.	3.6	432
70	Adolescent exposure to cannabinoids induces long-Lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons. Biological Psychiatry, 2004, 56, 86-94.	1.3	174
71	Cannabinoids modulate neuronal firing in the rat basolateral amygdala: evidence for CB1- and non-CB1-mediated actions. Neuropharmacology, 2004, 46, 115-125.	4.1	114
72	Long-Lasting Potentiation of GABAergic Synapses in Dopamine Neurons after a Single <i>In Vivo</i> Ethanol Exposure. Journal of Neuroscience, 2002, 22, 2074-2082.	3.6	175

#	Article	IF	CITATIONS
73	Electrophysiological Effects of Cannabinoids in the Basal Ganglia. Advances in Behavioral Biology, 2002, , 275-296.	0.2	0
74	Effects of cannabinoids on prefrontal neuronal responses to ventral tegmental area stimulation. European Journal of Neuroscience, 2001, 14, 96-102.	2.6	78
75	Dissociation of Haloperidol, Clozapine, and Olanzapine Effects on Electrical Activity of Mesocortical Dopamine Neurons and Dopamine Release in the Prefrontal Cortex. Neuropsychopharmacology, 2000, 22, 642-649.	5.4	97
76	Cyclo-oxygenase-inhibitors increase morphine effects on mesolimbic dopamine neurons. European Journal of Pharmacology, 2000, 387, R1-R3.	3.5	9
77	The cyclo-oxygenase inhibitor nimesulide induces conditioned place preference in rats. European Journal of Pharmacology, 2000, 406, 75-77.	3.5	6
78	Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2000, 24, 993-1006.	4.8	104
79	Lasting reduction in mesolimbic dopamine neuronal activity after morphine withdrawal. European Journal of Neuroscience, 1999, 11, 1037-1041.	2.6	106
80	Clozapine potently stimulates mesocortical dopamine neurons. European Journal of Pharmacology, 1999, 366, R11-R13.	3.5	26
81	Increase in meso-prefrontal dopaminergic activity after stimulation of CB1 receptors by cannabinoids. European Journal of Neuroscience, 1998, 10, 2825-2830.	2.6	124
82	Haloperidol does not produce dopamine cell depolarization-block in paralyzed, unanesthetized rats. Brain Research, 1998, 783, 127-132.	2.2	22
83	Clozapine does activate nigrostriatal dopamine neurons in unanesthetized rats. European Journal of Pharmacology, 1998, 363, 135-138.	3.5	8
84	Cannabinoids activate mesolimbic dopamine neurons by an action on cannabinoid CB1 receptors. European Journal of Pharmacology, 1998, 341, 39-44.	3.5	333
85	Mesolimbic dopaminergic decline after cannabinoid withdrawal. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10269-10273.	7.1	187
86	Chronic morphine and naltrexone fail to modify \hat{l} 4-opioid receptor mRNA levels in the rat brain. Molecular Brain Research, 1997, 45, 149-153.	2.3	64