Diane Beauchemin

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/2217854/publications.pdf
Version: 2024-02-01

Identification and quantitation of arsenic species in a dogfish muscle reference material for traceelements. Analytical Chemistry, 1988, 60, 2209-2212.spectrometry with on-line preconcentration. Analytical Chemistry, 1989, 61, 1857-1862.

6 Determination of arsenic species by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 1989, 4, 285.spectrometry. Analytical Chemistry, 1987, 59, 778-783.
$9 \quad$ Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2010, 82, 4786-4810. 108

Effect of concomitant elements on the distribution of ions in inductively coupled plasma-mass
22 spectroscopy. Part 1. Elemental ions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2000, 55,
Bioaccessibility of total arsenic and arsenic species in seafood as determined by a continuous online
leaching method. Analytical and Bioanalytical Chemistry, 2012, 402, 2849-2859.
26 Influence of the Working and Counter Electrode Surface Area Ratios on the Dissolution of Platinum
under Electrochemical Conditions. ACS Catalysis, 2016, 6, 5108-5116.

$27 \quad$| Use of a continuous leaching method to assess the oral bioaccessibility of trace elements in seafood. |
| :--- |
| Food Chemistry, 2012, 135,623-633. |

Spatial profiling of analyte signal intensities in inductively coupled plasma mass spectrometry.
Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 291-311.

Effect of methanol and sodium dodecylsulfate on radial profiles of ion abundance in inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 319-325.powdered rice. Analytica Chimica Acta, 2014, 851, 23-29.

Online Standard Addition Method with ICPMS Using Flow Injection. Analytical Chemistry, 1995, 67,

Characterization of inductively coupled plasma mass spectrometry with segmented-flow injection.
55

Flow Injection Single Particle Inductively Coupled Plasma Mass Spectrometry: An Original Simple
56 Approach for the Characterization of Metal-Based Nanoparticles. Analytical Chemistry, 2016, 88,
10552-10558.
Determination of trace metals in saline water using flow injection on-line precipitation coupled with
inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2001, 16,
$3.0 \quad 26$
1356-1363.

Analysis of the marine sediment reference material PACS-1 by inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 1988, 43, 413-420.
2.9

Continuous leach inductively coupled plasma mass spectrometry: applications for exploration and
$0.9 \quad 25$

60 Structural Transformation of Monocrystalline Platinum Electrodes upon Electro-oxidation and
Electro-dissolution. ACS Catalysis, 2018, 8, 6426-6439.
$11.2 \quad 25$

Preliminary investigation of direct sea-water analysis by inductively coupled plasma mass
61 spectrometry using a mixed-gas plasma, flow injection and external calibration. Journal of Analytica
$3.0 \quad 24$
Atomic Spectrometry, 2003, 18, 1109-1112.

Automated On-Line Isotope Dilution Analysis with ICP-MS Using Sandwich Flow Injection. Analytical Chemistry, 1998, 70, 1036-1040.
6.5

22
Ultrasonic nebulization with an infrared heated pre-evaporation tube for sample introduction in
63 ICP-OES: application to geological and environmental samples. Journal of Analytical Atomic

Spectrometry, 2012, 27, 1254. | Improvement of the capabilities of solid sampling ETV-ICP-OES by coupling ETV to a |
| :--- |
| nebulisation/pre-evaporation system. Journal of Analytical Atomic Spectrometry, 2014, 29, 1371. | 22 2.0

65 On-Line Isotope Dilution Analysis with ICPMS Using Reverse Flow Injection. Analytical Chemistry, 1997,
65 69,3183-3187.
21
66 Simultaneous Speciation Analysis of Arsenic, Chromium, and Selenium in the Bioaccessible Fraction for Realistic Risk Assessment of Food Safety. Analytical Chemistry, 2017, 89, 13299-13304.
6.5

21
Forensic analysis of automotive paint chips for the identification of the vehicle manufacturer,
67 colour and year of production using electrothermal vaporization coupled to inductively coupled
$3.0 \quad 21$
plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2017, 32, 1601-1607.
21

The effect of pre-evaporation on ion distributions in inductively coupled plasma mass spectrometry.
68 Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 157-163.
2.9

19
$3.0 \quad 19$
without compromising robustness using an infrared-heated sample introduction system with a pneumatic nebulizer. Journal of Analytical Atomic Spectrometry, 2015, 30, 214-224.

Improving accuracy in single particle inductively coupled plasma mass spectrometry based on
73
74

Ethnic background and gender identification using electrothermal vaporization coupled to
73 inductively coupled plasma optical emission spectrometry for forensic analysis of human hair.
$3.0 \quad 16$
Journal of Analytical Atomic Spectrometry, 2014, 29, 1228-1232.

74 An argonâ€"nitrogenâ€"hydrogen mixed-gas plasma as a robust ionization source for inductively coupled
1-6.

76 Univariate optimization of segmented-flow injection for inductively coupled plasma mass
spectrometry. Journal of Analytical Atomic Spectrometry, 1994, 9, 1341.Journal of Analytical Atomic Spectrometry, 2020, 35, 1097-1102.

Spectroscopy, 2006, 61, 965-970.
Investigation of a measure of robustness in inductively coupled plasma mass spectrometry.
85 New infrared-heated sample introduction system for enhanced analytical performance of inductively
85 coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2018, 33,
3.0
13
738-744.

86 Determination of stability constants of metal complexes with IC-ICP-MS. Journal of Analytical Atomic
3.0

12 Spectrometry, 2009, 24, 336.
$3.0 \quad 12$
Effect of sheathing the sample aerosol with hydrogen, nitrogen or water vapour on the analytical
performance of solid sampling electrothermal vaporisation coupled to inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2019, 34, 1426-1432.

Determination of total tin in National Research Council of Canada marine reference materials.
The use of solâ€"gels as solid calibration standards for the analysis of soil samples by laser ablation
91
coupled to inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometr

Solid sampling analysis of a Mg alloy using electrothermal vaporization inductively coupled plasma

Inductively coupled plasma mass spectrometry with on-line leaching to assess the maximum
94 bio-accessibility of toxic and essential elements in wheat from Saudi Arabia. Journal of Analytical
Atomic Spectrometry, 2018, 33, 642-648.
Improvement of sample introduction to inductively coupled plasma optical emission spectrometry
using an ultrasonic nebulizer with an infrared heated pre-evaporation tube. Journal of Analytical
Atomic Spectrometry, 2018, 33, 127-134.

Characterization of platinum nanoparticles for fuel cell applications by single particle inductively
coupled plasma mass spectrometry. Analytica Chimica Acta, 2020, 1139, 36-41.
$5.4 \quad 10$

Simultaneous determination of two conditional stability constants by IC-ICP-MS. Journal of Analytical
Atomic Spectrometry, 2006, 21, 1419.
3.0

9

98 Towards the use of ICP-OES for the elemental analysis of organic compounds such as glucosamine.
Journal of Analytical Atomic Spectrometry, 2014, 29, 454.

Direct analysis of wheat flour by inductively coupled plasma mass spectrometry with flow injection,
99 slurry nebulization, and a mixed-gas plasma. Journal of Analytical Atomic Spectrometry, 2020, 35, 2820-2825.

A total consumption (up to $75 \hat{1} 1 / 4 \mathrm{~L}$ min<sup>â^1〈/sup>) infrared-heated sample introduction system for
100 inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry,
3.0 2020, 35, 1125-1130.

Towards the reduction of matrix effects in inductively coupled plasma optical emission spectrometry:
101 an argonâ $€$ "nitrogenâ $€$ "hydrogen mixed-gas plasma for the analysis of geological and environmental
samples. Journal of Analytical Atomic Spectrometry, 2017, 32, 1688-1696.
102 Improvements to the analytical performance of inductively coupled plasma optical emission
102 spectrometry by coupling a multi-mode sample introduction system to an infrared heated
$3.0 \quad 8$
pre-evaporation tube. Journal of Analytical Atomic Spectrometry, 2018, 33, 1068-1075.
Infrared heating of commercially available spray chambers to improve the analytical performance of
103 inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry,
$3.0 \quad 8$ 2018, 33, 2008-2014.

Risk assessment of trace elements in airborne particulate matter deposited on air filters using solid sampling ETV-ICPOES to measure total concentrations and leaching with simulated saliva, gastric juice
$3.0 \quad 8$ and lung fluid to estimate bio-accessibility. Journal of Analytical Atomic Spectrometry, 2018, 33, 1486-1492.

Improving the analytical performance of electrothermal vaporization coupled to inductively coupled
105 plasma optical emission spectrometry using a mixed-gas plasma. Journal of Analytical Atomic
$3.0 \quad 8$
Spectrometry, 2019, 34, 891-898.
106 Biosynthesis of the Fungal Organophosphonate Fosfonochlorin Involves an Iron(II) and
2â€\{Oxo)glutarate Dependent Oxacyclase. ChemBioChem, 2022, 23, .
Kinetic study of the reduction of $\mathrm{Cr}(\mathrm{vi})$ in natural water using ion exchange chromatography coupled
109 to inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2011,26

110 Preconcentration of noble metals on alumina prior to analysis by inductively coupled plasma mass
$5.4 \quad 6$ spectrometry: Application to geological samples. Analytica Chimica Acta, 2020, 1136, 151-156.

Methods to increase sample transport efficiency in single particle inductively coupled plasma mass
111 spectrometry when analyzing nanoparticles. Journal of Analytical Atomic Spectrometry, 2020, 35,
$3.0 \quad 6$ 2165-2170.

112 Stabilization and Solvent Driven Crystal-to-Crystal Transition between New Bismuth Halides.

Solid sampling ETV-ICP-OES to study the distribution of elements in clay and soil samples for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 2013, 13, 11-20.
Infrared heating of the top surface of a cyclonic spray chamber to improve the analytical115 performance of inductively coupled plasma optical emission spectrometry. Journal of Analytical$3.0 \quad 5$Atomic Spectrometry, 2019, 34, 232-238.
116 Integrating Instead of Averaging Signal Intensity to Simplify Nanoparticle Mass Measurement by Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2020, 92, 12778-12782.
117 How much aqueous sample can an inductively coupled plasma withstand?. Journal of Analytical 3.0 5
The effect of hydrogen on fluorine detection in solid sampling electrothermal 118 vaporization-inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2021, 36, 1104-1111.
119 elements in soils and soil-like media for use in human health risk assessment. International Journal of 4.3 Hygiene and Environmental Health, 2022, 240, 113929.
120 Comparison of monosegmented flow analysis to flow injection for single particle inductively 3.0
5 coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2022, 37, 727-732.$6.5 \quad 4$
121 Limits of Detection and Quantification of Electrochemical Quartz-Crystal Nanobalance in PlatinDeveloping a method for the determination of sulphur and other elements in avian bone and slag3.04using ETV-ICPOES. Journal of Analytical Atomic Spectrometry, 2020, 35, 2487-2493.

128 Direct analysis of soils by ETV-ICP-AES: a powerful tool for mineral exploration. Geochemistry: Exploration, Environment, Analysis, 2014, 14, 305-313.

129 | Forensic analysis of leadâ€" "tin solder by inductively coupled plasma mass spectrometry. Journal of |
| :--- |
| Analytical Atomic Spectrometry, 2018, 33, 1784-1789. |

Characterization of a 12ÂM KOH zincate fuel for green energy backup systems using flow injection
130 coupled to inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 2019, 34, 899-905.

131	Pragmatic method based on on-line leaching and inductively coupled plasma mass spectrometry for risk assessment of the impact of short-term pollution. Journal of Analytical Atomic Spectrometry, 2021, 36, 622-629.	3.0	3
132	A comparative study of sheathing devices to increase robustness in inductively coupled plasma optical emission spectrometry<i>via</i>a nitrogen flow. Journal of Analytical Atomic Spectrometry, 2018, 33, 1269-1273.	3.0	2
133	Inductively coupled plasma mass spectrometry coupled to cation exchange chromatography for the determination of trace nickel in alkaline electrolyte. Journal of Analytical Atomic Spectrometry, 2020, 35, 1295-1299.	3.0	2
134	Flow injection of slurries of a lithium borate fusion disc for multi-elemental analysis by mixed-gas inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2021, 36, 2051-2055.	3.0	2
135	Multi-elemental risk assessment of various baby rice cereals: some cause for concern?. Canadian Journal of Chemistry, 2021, 99, 742-750.	1.1	2

Source apportionment of bioaccessible lead in soil reference materials using the continuous on-line
136 leaching method and inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 2022, 1189, 5.4 339214.

The inductively coupled plasma as a source for optical emission spectrometry and mass spectrometry. , 2020, , 1-55.

