
Sara Snogerup Linse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2217166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2050-2055.	7.1	2,705
2	Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9758-9763.	7.1	1,162
3	Nucleation of protein fibrillation by nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8691-8696.	7.1	800
4	Detailed Identification of Plasma Proteins Adsorbed on Copolymer Nanoparticles. Angewandte Chemie - International Edition, 2007, 46, 5754-5756.	13.8	721
5	Atomic Resolution Structure of Monomorphic Aβ ₄₂ Amyloid Fibrils. Journal of the American Chemical Society, 2016, 138, 9663-9674.	13.7	695
6	The nanoparticle–protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Advances in Colloid and Interface Science, 2007, 134-135, 167-174.	14.7	618
7	On the lag phase in amyloid fibril formation. Physical Chemistry Chemical Physics, 2015, 17, 7606-7618.	2.8	590
8	Methods for the detection and analysis of protein–protein interactions. Proteomics, 2007, 7, 2833-2842.	2.2	554
9	Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7671-7676.	7.1	546
10	Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nature Protocols, 2016, 11, 252-272.	12.0	546
11	Inhibition of Amyloid β Protein Fibrillation by Polymeric Nanoparticles. Journal of the American Chemical Society, 2008, 130, 15437-15443.	13.7	499
12	Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 2017, 7, 11452.	3.3	491
13	Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles. Environmental Science & Technology, 2015, 49, 553-561.	10.0	421
14	Differences in nucleation behavior underlie the contrasting aggregation kinetics of the AÎ240 and AÎ242 peptides. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9384-9389.	7.1	405
15	Food Chain Transport of Nanoparticles Affects Behaviour and Fat Metabolism in Fish. PLoS ONE, 2012, 7, e32254.	2.5	397
16	A molecular chaperone breaks the catalytic cycle that generates toxic AÎ ² oligomers. Nature Structural and Molecular Biology, 2015, 22, 207-213.	8.2	373
17	Systematic Investigation of the Thermodynamics of HSA Adsorption to <i>N</i> - <i>iso-</i> Propylacrylamide/ <i>N</i> - <i>tert</i> Butylacrylamide Copolymer Nanoparticles. Effects of Particle Size and Hydrophobicity. Nano Letters, 2007, 7, 914-920.	9.1	357
18	Amyloid β-Protein Aggregation Produces Highly Reproducible Kinetic Data and Occurs by a Two-Phase Process. ACS Chemical Neuroscience, 2010, 1, 13-18.	3.5	339

#	Article	IF	CITATIONS
19	Secondary nucleation in amyloid formation. Chemical Communications, 2018, 54, 8667-8684.	4.1	323
20	Acceleration of α-Synuclein Aggregation by Exosomes. Journal of Biological Chemistry, 2015, 290, 2969-2982.	3.4	305
21	Modeling the Time Evolution of the Nanoparticle-Protein Corona in a Body Fluid. PLoS ONE, 2010, 5, e10949.	2.5	272
22	Dual Effect of Amino Modified Polystyrene Nanoparticles on Amyloid β Protein Fibrillation. ACS Chemical Neuroscience, 2010, 1, 279-287.	3.5	252
23	Complete highâ€density lipoproteins in nanoparticle corona. FEBS Journal, 2009, 276, 3372-3381.	4.7	247
24	A facile method for expression and purification of the Alzheimer's diseaseâ€associated amyloid βâ€peptide. FEBS Journal, 2009, 276, 1266-1281.	4.7	237
25	Dynamics of oligomer populations formed during the aggregation of Alzheimer's Aβ42 peptide. Nature Chemistry, 2020, 12, 445-451.	13.6	223
26	Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation. Nature Communications, 2016, 7, 10948.	12.8	219
27	Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer's disease. Acta Neuropathologica, 2019, 138, 251-273.	7.7	187
28	Cholesterol catalyses Al²42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes. Nature Chemistry, 2018, 10, 673-683.	13.6	186
29	Molecular Characterization of α–Lactalbumin Folding Variants That Induce Apoptosis in Tumor Cells. Journal of Biological Chemistry, 1999, 274, 6388-6396.	3.4	185
30	Detecting Cryptic Epitopes Created by Nanoparticles. Science Signaling, 2006, 2006, pe14-pe14.	3.6	184
31	Secondary nucleation of monomers on fibril surface dominates <i>î±</i> -synuclein aggregation and provides autocatalytic amyloid amplification. Quarterly Reviews of Biophysics, 2017, 50, e6.	5.7	183
32	An anticancer drug suppresses the primary nucleation reaction that initiates the production of the toxic Aβ42 aggregates linked with Alzheimer's disease. Science Advances, 2016, 2, e1501244.	10.3	180
33	Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E200-E208.	7.1	180
34	Interaction of the Molecular Chaperone DNAJB6 with Growing Amyloid-beta 42 (Aβ42) Aggregates Leads to Sub-stoichiometric Inhibition of Amyloid Formation. Journal of Biological Chemistry, 2014, 289, 31066-31076.	3.4	158
35	Surface Effects on Aggregation Kinetics of Amyloidogenic Peptides. Journal of the American Chemical Society, 2014, 136, 11776-11782.	13.7	158
36	Electrostatic contributions to the binding of calcium in calbindin D9k. Biochemistry, 1991, 30, 154-162.	2.5	152

#	Article	IF	CITATIONS
37	The nanoparticle protein corona formed in human blood or human blood fractions. PLoS ONE, 2017, 12, e0175871.	2.5	148
38	The role of protein surface charges in ion binding. Nature, 1988, 335, 651-652.	27.8	144
39	HAMLET kills tumor cells by an apoptosis-like mechanism—cellular, molecular, and therapeutic aspects. Advances in Cancer Research, 2003, 88, 1-29.	5.0	143
40	The S/T-Rich Motif in the DNAJB6 Chaperone Delays Polyglutamine Aggregation and the Onset of Disease in a Mouse Model. Molecular Cell, 2016, 62, 272-283.	9.7	140
41	Structure-function relationships in EF-hand calcium-binding proteins. Protein engineering and biophysical studies of calbindin D9k. Biochemistry, 1987, 26, 6723-6735.	2.5	139
42	Structure and functional properties of the <i>Bacillus subtilis</i> transcriptional repressor Rex. Molecular Microbiology, 2008, 69, 466-478.	2.5	134
43	Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide. Nature Chemistry, 2018, 10, 523-531.	13.6	129
44	BRICHOS Domains Efficiently Delay Fibrillation of Amyloid β-Peptide. Journal of Biological Chemistry, 2012, 287, 31608-31617.	3.4	127
45	Secondary nucleation and elongation occur at different sites on Alzheimer's amyloid-β aggregates. Science Advances, 2019, 5, eaau3112.	10.3	127
46	Membrane Interaction of α-Synuclein in Different Aggregation States. Journal of Parkinson's Disease, 2011, 1, 359-371.	2.8	123
47	Kinetic fingerprints differentiate the mechanisms of action of anti-AÎ ² antibodies. Nature Structural and Molecular Biology, 2020, 27, 1125-1133.	8.2	123
48	Protein Microgels from Amyloid Fibril Networks. ACS Nano, 2015, 9, 43-51.	14.6	121
49	The Aβ40 and Aβ42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation. Chemical Science, 2015, 6, 4215-4233.	7.4	121
50	α-Lactalbumin unfolding is not sufficient to cause apoptosis, but is required for the conversion to HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Science, 2003, 12, 2794-2804.	7.6	120
51	Quantification of the Concentration of Aβ42 Propagons during the Lag Phase by an Amyloid Chain Reaction Assay. Journal of the American Chemical Society, 2014, 136, 219-225.	13.7	120
52	Selective targeting of primary and secondary nucleation pathways in AÎ ² 42 aggregation using a rational antibody scanning method. Science Advances, 2017, 3, e1700488.	10.3	116
53	3 Determinants that govern high-affinity calcium binding. Advances in Second Messenger and Phosphoprotein Research, 1995, 30, 89-151.	4.5	114
54	Calbindin D28k Exhibits Properties Characteristic of a Ca2+ Sensor. Journal of Biological Chemistry, 2002, 277, 16662-16672.	3.4	113

#	Article	IF	CITATIONS
55	Membrane Lipid Co-Aggregation with α-Synuclein Fibrils. PLoS ONE, 2013, 8, e77235.	2.5	113
56	Monomer-dependent secondary nucleation in amyloid formation. Biophysical Reviews, 2017, 9, 329-338.	3.2	112
57	Salting the Charged Surface: pH and Salt Dependence of Protein G B1 Stability. Biophysical Journal, 2006, 90, 2911-2921.	0.5	111
58	Trodusquemine enhances AÎ ² 42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes. Nature Communications, 2019, 10, 225.	12.8	111
59	Microfluidic Diffusion Analysis of the Sizes and Interactions of Proteins under Native Solution Conditions. ACS Nano, 2016, 10, 333-341.	14.6	105
60	High Resolution Structural Characterization of Aβ ₄₂ Amyloid Fibrils by Magic Angle Spinning NMR. Journal of the American Chemical Society, 2015, 137, 7509-7518.	13.7	103
61	Kinetic diversity of amyloid oligomers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12087-12094.	7.1	103
62	Residue-Specific p <i>K</i> _a Determination of Lysine and Arginine Side Chains by Indirect ¹⁵ N and ¹³ C NMR Spectroscopy:  Application to <i>apo</i> Calmodulin. Journal of the American Chemical Society, 2007, 129, 15805-15813.	13.7	99
63	Lipids as cofactors in protein folding: Stereo-specific lipid-protein interactions are required to form HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Science, 2003, 12, 2805-2814.	7.6	98
64	On the role of sidechain size and charge in the aggregation of A <i>β</i> 42 with familial mutations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5849-E5858.	7.1	98
65	Mutational effects on the cooperativity of calcium binding in calmodulin. Biochemistry, 1993, 32, 7866-7871.	2.5	96
66	Semenogelins I and II bind zinc and regulate the activity of prostate-specific antigen. Biochemical Journal, 2005, 387, 447-453.	3.7	96
67	Structural Changes in Apolipoproteins Bound to Nanoparticles. Langmuir, 2011, 27, 14360-14369.	3.5	95
68	Role of Aromatic Side Chains in Amyloid β-Protein Aggregation. ACS Chemical Neuroscience, 2012, 3, 1008-1016.	3.5	92
69	Measurement of Ca2+-Binding Constants of Proteins and Presentation of the CaLigator Software. Analytical Biochemistry, 2002, 305, 195-205.	2.4	91
70	A folding variant of α-lactalbumin with bactericidal activity against Streptococcus pneumoniae. Molecular Microbiology, 2002, 35, 589-600.	2.5	91
71	Physical determinants of the self-replication of protein fibrils. Nature Physics, 2016, 12, 874-880.	16.7	90
72	Binding of calcium ions and SNAP-25 to the hexa EF-hand protein secretagogin. Biochemical Journal, 2007, 401, 353-363.	3.7	88

#	Article	IF	CITATIONS
73	Battle for the EF-Hands:  Magnesiumâ^'Calcium Interference in Calmodulin. Biochemistry, 1999, 38, 11844-11850.	2.5	85
74	Adsorption of α-Synuclein to Supported Lipid Bilayers: Positioning and Role of Electrostatics. ACS Chemical Neuroscience, 2013, 4, 1339-1351.	3.5	82
75	Measurement and Modelling of Sequence-specific pKaValues of Lysine Residues in Calbindin D9k. Journal of Molecular Biology, 1996, 259, 828-839.	4.2	81
76	Quantitative analysis of intrinsic and extrinsic factors in the aggregation mechanism of Alzheimer-associated Al̂2-peptide. Scientific Reports, 2016, 6, 18728.	3.3	77
77	140 Mouse Brain Proteins Identified by Ca2+-Calmodulin Affinity Chromatography and Tandem Mass Spectrometry. Journal of Proteome Research, 2006, 5, 669-687.	3.7	76
78	Size-Dependent Effects of Nanoparticles on Enzymes in the Blood Coagulation Cascade. Nano Letters, 2014, 14, 4736-4744.	9.1	76
79	Cooperativity: over the Hill. Trends in Biochemical Sciences, 1995, 20, 495-497.	7.5	73
80	Polystyrene nanoparticles affecting blood coagulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 981-986.	3.3	73
81	A ² dimers differ from monomers in structural propensity, aggregation paths and population of synaptotoxic assemblies. Biochemical Journal, 2014, 461, 413-426.	3.7	71
82	The BRICHOS Domain, Amyloid Fibril Formation, and Their Relationship. Biochemistry, 2013, 52, 7523-7531.	2.5	70
83	myo-Inositol Monophosphatase Is an Activated Target of Calbindin D28k. Journal of Biological Chemistry, 2002, 277, 41954-41959.	3.4	68
84	Mechanism of amyloid protein aggregation and the role of inhibitors. Pure and Applied Chemistry, 2019, 91, 211-229.	1.9	68
85	Calcium binding, structural stability and guanylate cyclase activation in GCAP1 variants associated with human cone dystrophy. Cellular and Molecular Life Sciences, 2010, 67, 973-984.	5.4	67
86	Calmodulin Binding to the Polybasic C-Termini of STIM Proteins Involved in Store-Operated Calcium Entry. Biochemistry, 2008, 47, 6089-6091.	2.5	66
87	Structural basis for the negative allostery between Ca ²⁺ ―and Mg ²⁺ â€binding in the intracellular Ca ²⁺ â€receptor calbindin D _{9k} . Protein Science, 1997, 6, 1139-1147.	7.6	65
88	Retardation of Aβ Fibril Formation by Phospholipid Vesicles Depends onÂMembrane Phase Behavior. Biophysical Journal, 2010, 98, 2206-2214.	0.5	65
89	Scaling behaviour and rate-determining steps in filamentous self-assembly. Chemical Science, 2017, 8, 7087-7097.	7.4	65
90	ldentification of on- and off-pathway oligomers in amyloid fibril formation. Chemical Science, 2020, 11, 6236-6247.	7.4	64

#	Article	IF	CITATIONS
91	Isolated Hypervariable Regions Derived from Streptococcal M Proteins Specifically Bind Human C4b-Binding Protein: Implications for Antigenic Variation. Journal of Immunology, 2001, 167, 3870-3877.	0.8	62
92	Charge Dependent Retardation of Amyloid \hat{l}^2 Aggregation by Hydrophilic Proteins. ACS Chemical Neuroscience, 2014, 5, 266-274.	3.5	62
93	Protein surface charges and calcium binding to individual sites in calbindin D9k: stopped-flow studies. Biochemistry, 1990, 29, 4188-4193.	2.5	61
94	Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the AÎ ² 42 peptide and its variants. Chemical Science, 2017, 8, 4352-4362.	7.4	60
95	Phage display and kinetic selection of antibodies that specifically inhibit amyloid self-replication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6444-6449.	7.1	60
96	Stability of HAMLETA kinetically trapped Â-lactalbumin oleic acid complex. Protein Science, 2005, 14, 329-340.	7.6	59
97	N-Terminal Extensions Retard AÎ ² 42 Fibril Formation but Allow Cross-Seeding and Coaggregation with AÎ ² 42. Journal of the American Chemical Society, 2015, 137, 14673-14685.	13.7	58
98	The role of fibril structure and surface hydrophobicity in secondary nucleation of amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25272-25283.	7.1	58
99	The Role of Electrostatic Interactions in Calmodulin-Peptide Complex Formation. Biophysical Journal, 2004, 87, 1929-1938.	0.5	57
100	Ganglioside lipids accelerate α-synuclein amyloid formation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 1062-1072.	2.3	57
101	Extreme Sequence Divergence but Conserved Ligand-Binding Specificity in Streptococcus pyogenes M Protein. PLoS Pathogens, 2006, 2, e47.	4.7	56
102	Latent analysis of unmodified biomolecules and their complexes in solution with attomole detection sensitivity. Nature Chemistry, 2015, 7, 802-809.	13.6	56
103	SAR by kinetics for drug discovery in protein misfolding diseases. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10245-10250.	7.1	54
104	Conserved S/T Residues of the Human Chaperone DNAJB6 Are Required for Effective Inhibition of Aβ42 Amyloid Fibril Formation. Biochemistry, 2018, 57, 4891-4902.	2.5	52
105	Protein reconstitution and threeâ€dimensional domain swapping: Benefits and constraints of covalency. Protein Science, 2007, 16, 2317-2333.	7.6	51
106	Specific Binding of a \hat{l}^2 -Cyclodextrin Dimer to the Amyloid \hat{l}^2 Peptide Modulates the Peptide Aggregation Process. Biochemistry, 2012, 51, 4280-4289.	2.5	49
107	Calmodulin mutations causing catecholaminergic polymorphic ventricular tachycardia confer opposing functional and biophysical molecular changes. FEBS Journal, 2015, 282, 803-816.	4.7	49
108	Thermodynamic and kinetic design principles for amyloid-aggregation inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24251-24257.	7.1	49

#	Article	IF	CITATIONS
109	High Affinity Antibodies to Plasmodium falciparum Merozoite Antigens Are Associated with Protection from Malaria. PLoS ONE, 2012, 7, e32242.	2.5	49
110	Calcium binding to calbindin D9k strongly affects backbone dynamics: measurements of exchange rates of individual amide protons using proton NMR. Biochemistry, 1990, 29, 5925-5934.	2.5	48
111	Effect of amino acid substitutions and deletions on the thermal stability, the pH stability and unfolding by urea of bovine calbindin D9k. FEBS Journal, 1988, 175, 439-445.	0.2	47
112	Quantitative measurements of the cooperativity in an EFâ€hand protein with sequential calcium binding. Protein Science, 1995, 4, 1038-1044.	7.6	47
113	Disulfide bonds in homo―and heterodimers of EFâ€hand subdomains of calbindin D _{9k} : Stability, calcium binding, and NMR studies. Protein Science, 1993, 2, 985-1000.	7.6	46
114	Binding Site for C4b-Binding Protein in Vitamin K-Dependent Protein S Fully Contained in Carboxy-Terminal Laminin-G-type Repeats. A Study Using Recombinant Factor IX-Protein S Chimeras and Surface Plasmon Resonanceâ€. Biochemistry, 1997, 36, 3745-3754.	2.5	46
115	pKa Values for Side-Chain Carboxyl Groups of a PGB1 Variant Explain Salt and pH-Dependent Stability. Biophysical Journal, 2007, 92, 257-266.	0.5	46
116	Autocatalytic amplification of Alzheimer-associated Aβ42 peptide aggregation in human cerebrospinal fluid. Communications Biology, 2019, 2, 365.	4.4	46
117	Ca2+- and H+-Dependent Conformational Changes of Calbindin D28kâ€. Biochemistry, 2000, 39, 6864-6873.	2.5	45
118	Monomeric and fibrillar α-synuclein exert opposite effects on the catalytic cycle that promotes the proliferation of Aβ42 aggregates. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8005-8010.	7.1	45
119	Dynamics of Conformational Ca ²⁺ -Switches in Signaling Networks Detected by a Planar Plasmonic Device. Analytical Chemistry, 2012, 84, 2982-2989.	6.5	44
120	The chaperone domain BRICHOS prevents amyloid β-peptide CNS toxicity in Drosophila melanogaster. DMM Disease Models and Mechanisms, 2014, 7, 659-65.	2.4	44
121	Lipid Dynamics and Phase Transition within α-Synuclein Amyloid Fibrils. Journal of Physical Chemistry Letters, 2019, 10, 7872-7877.	4.6	43
122	Ionization Behavior of Acidic Residues in Calbindin D9k. Proteins: Structure, Function and Bioinformatics, 1999, 37, 106-115.	2.6	41
123	The chaperone-like activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic α-helix. BBA - Proteins and Proteomics, 2001, 1545, 227-237.	2.1	41
124	Calcium Binding and Thermostability of Carbohydrate Binding Module CBM4-2 of Xyn10A fromRhodothermus marinusâ€. Biochemistry, 2002, 41, 5720-5729.	2.5	41
125	Integrated Protein Array Screening and High Throughput Validation of 70 Novel Neural Calmodulin-binding Proteins. Molecular and Cellular Proteomics, 2010, 9, 1118-1132.	3.8	41
126	A peptide from human semenogelin I self-assembles into a pH-responsive hydrogel. Soft Matter, 2015, 11, 414-421.	2.7	41

#	Article	IF	CITATIONS
127	Fragment Complementation Studies of Protein Stabilization by Hydrophobic Core Residuesâ€. Biochemistry, 2001, 40, 1257-1264.	2.5	40
128	Three-Dimensional Tracking of Small Aquatic Organisms Using Fluorescent Nanoparticles. PLoS ONE, 2013, 8, e78498.	2.5	40
129	Direct High Affinity Interaction between Aβ42 and GSK3α Stimulates Hyperphosphorylation of Tau. A New Molecular Link in Alzheimer's Disease?. ACS Chemical Neuroscience, 2016, 7, 161-170.	3.5	40
130	Hydrophobic Core Substitutions in Calbindin D9k: Effects on Ca2+Binding and Dissociationâ€. Biochemistry, 1998, 37, 8926-8937.	2.5	39
131	Electrostatic Contributions to the Kinetics and Thermodynamics of Protein Assembly. Biophysical Journal, 2005, 88, 1991-2002.	0.5	39
132	On-chip label-free protein analysis with downstream electrodes for direct removal of electrolysis products. Lab on A Chip, 2018, 18, 162-170.	6.0	39
133	Ca2+-Binding Stoichiometry of Calbindin D28k As Assessed by Spectroscopic Analyses of Synthetic Peptide Fragments. Biochemistry, 1996, 35, 3662-3669.	2.5	38
134	Domain organization of calbindin D _{28k} as determined from the association of six synthetic EFâ€hand fragments. Protein Science, 1997, 6, 2385-2396.	7.6	38
135	Delivery success rate of engineered nanoparticles in the presence of the protein corona: a systems-level screening. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1271-1281.	3.3	38
136	Direct measurement of lipid membrane disruption connects kinetics and toxicity of Aβ42 aggregation. Nature Structural and Molecular Biology, 2020, 27, 886-891.	8.2	38
137	Mechanism of Secondary Nucleation at the Single Fibril Level from Direct Observations of Al ² 42 Aggregation. Journal of the American Chemical Society, 2021, 143, 16621-16629.	13.7	38
138	Ultrastructural evidence for self-replication of Alzheimer-associated AÎ ² 42 amyloid along the sides of fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11265-11273.	7.1	37
139	Mastoparan binding induces a structural change affecting both the N-terminal and C-terminal domains of calmodulin. FEBS Letters, 1986, 199, 28-32.	2.8	36
140	An extended hudrophobic core induces EF-hand swapping. Protein Science, 2001, 10, 927-933.	7.6	36
141	Hydrophobic Core Substitutions in Calbindin D9k: Effects on Stability and Structureâ€. Biochemistry, 1998, 37, 8915-8925.	2.5	35
142	Focusing of the electrostatic potential at EF-hands of calbindin D9k: Titration of acidic residues. Proteins: Structure, Function and Bioinformatics, 2001, 45, 129-135.	2.6	35
143	Identification of a high-affinity network of secretagogin-binding proteins involved in vesicle secretion. Molecular BioSystems, 2011, 7, 2196.	2.9	35
144	Effects of Polyamino Acids and Polyelectrolytes on Amyloid β Fibril Formation. Langmuir, 2014, 30, 8812-8818.	3.5	35

#	Article	IF	CITATIONS
145	The High Affinity Calcium-binding Sites in the Epidermal Growth Factor Module Region of Vitamin K-dependent Protein S. Journal of Biological Chemistry, 1997, 272, 23255-23260.	3.4	34
146	Compact oleic acid in HAMLET. FEBS Letters, 2005, 579, 6095-6100.	2.8	34
147	Role of protein surface charge in monellin sweetness. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 410-420.	2.3	34
148	Translocation of 40 nm diameter nanowires through the intestinal epithelium of <i>Daphnia magna</i> . Nanotoxicology, 2016, 10, 1160-1167.	3.0	34
149	Ion-binding properties of calbindin D9k: a Monte Carlo simulation study. Biochemistry, 1991, 30, 5209-5217.	2.5	33
150	The First Epidermal Growth Factor-like Domain of the Low-Density Lipoprotein Receptor Contains a Noncanonical Calcium Binding Site. Biochemistry, 2001, 40, 2555-2563.	2.5	33
151	Calcium Binding to Proteins Studied via Competition with Chromophoric Chelators. , 2002, 173, 015-024.		33
152	Charge Regulation during Amyloid Formation of α-Synuclein. Journal of the American Chemical Society, 2021, 143, 7777-7791.	13.7	33
153	SHBG region of the anticoagulant cofactor protein S: Secondary structure prediction, circular dichroism spectroscopy, and analysis of naturally occurring mutations. , 1997, 29, 478-491.		32
154	Both G-type domains of protein S are required for the high-affinity interaction with C4b-binding protein. FEBS Journal, 1999, 266, 935-942.	0.2	32
155	Coupling of ligand binding and dimerization of helix-loop-helix peptides: Spectroscopic and sedimentation analyses of calbindin D9k EF-hands. Proteins: Structure, Function and Bioinformatics, 2002, 47, 323-333.	2.6	31
156	Electrostatic Contributions to Residue-Specific Protonation Equilibria and Proton Binding Capacitance for a Small Protein. Biochemistry, 2006, 45, 13993-14002.	2.5	31
157	Site-Specific Protonation Kinetics of Acidic Side Chains in Proteins Determined by pH-Dependent Carboxyl ¹³ C NMR Relaxation. Journal of the American Chemical Society, 2015, 137, 3093-3101.	13.7	31
158	Domain Identification of Hormone-sensitive Lipase by Circular Dichroism and Fluorescence Spectroscopy, Limited Proteolysis, and Mass Spectrometry. Journal of Biological Chemistry, 1999, 274, 15382-15388.	3.4	30
159	Hamlet — A Complex from Human Milk that Induces Apoptosis in Tumor Cells but Spares Healthy Cells. Advances in Experimental Medicine and Biology, 2002, 503, 125-132.	1.6	30
160	Protein Reconstitution and 3D Domain Swapping. Current Protein and Peptide Science, 2002, 3, 629-642.	1.4	30
161	A Region of Vitamin K-dependent Protein S That Binds to C4b Binding Protein (C4BP) Identified Using Bacteriophage Peptide Display Libraries. Journal of Biological Chemistry, 1997, 272, 14658-14665.	3.4	29
162	Monte Carlo simulations of protein amyloid formation reveal origin of sigmoidal aggregation kinetics. Molecular BioSystems, 2011, 7, 2296.	2.9	29

#	Article	IF	CITATIONS
163	A Microfluidic Platform for Real-Time Detection and Quantification of Protein-Ligand Interactions. Biophysical Journal, 2016, 110, 1957-1966.	0.5	29
164	The Properties of α-Synuclein Secondary Nuclei Are Dominated by the Solution Conditions Rather than the Seed Fibril Strain. ACS Chemical Neuroscience, 2020, 11, 909-918.	3.5	29
165	An EF-hand phage display study of calmodulin subdomain pairing 1 1Edited by J. A. Wells. Journal of Molecular Biology, 2000, 296, 473-486.	4.2	28
166	Intra- versus Intermolecular Interactions in Monellin: Contribution of Surface Charges to Protein Assembly. Journal of Molecular Biology, 2006, 358, 1244-1255.	4.2	28
167	Salt Enhances Calmodulin-Target Interaction. Biophysical Journal, 2006, 90, 2903-2910.	0.5	27
168	Biocompatibility of mannan nanogel—safe interaction with plasma proteins. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1043-1051.	2.4	27
169	Screening of small molecules using the inhibition of oligomer formation in α-synuclein aggregation as a selection parameter. Communications Chemistry, 2020, 3, .	4.5	27
170	Calbindin D9k:  A Protein Optimized for Calcium Binding at Neutral pH. Biochemistry, 2001, 40, 15334-15340.	2.5	26
171	On the Mechanism of Self-Assembly by a Hydrogel-Forming Peptide. Biomacromolecules, 2020, 21, 4781-4794.	5.4	26
172	Chemical and Thermal Unfolding of Glypican-1: Protective Effect of Heparan Sulfate against Heat-Induced Irreversible Aggregation. Biochemistry, 2009, 48, 9994-10004.	2.5	25
173	Cu/Zn Superoxide Dismutase Forms Amyloid Fibrils under Near-Physiological Quiescent Conditions: The Roles of Disulfide Bonds and Effects of Denaturant. ACS Chemical Neuroscience, 2017, 8, 2019-2026.	3.5	25
174	A dopamine metabolite stabilizes neurotoxic amyloid-β oligomers. Communications Biology, 2021, 4, 19.	4.4	25
175	Structural Requirements of Anticoagulant Protein S for Its Binding to the Complement Regulator C4b-binding Protein. Journal of Biological Chemistry, 2002, 277, 15099-15106.	3.4	24
176	In vivo protein stabilization based on fragment complementation and a split GFP system. Proceedings of the United States of America, 2010, 107, 19826-19831.	7.1	24
177	Fluorescent Filter-Trap Assay for Amyloid Fibril Formation Kinetics in Complex Solutions. ACS Chemical Neuroscience, 2015, 6, 1436-1444.	3.5	24
178	The catalytic nature of protein aggregation. Journal of Chemical Physics, 2020, 152, 045101.	3.0	24
179	Surface-Catalyzed Secondary Nucleation Dominates the Generation of Toxic IAPP Aggregates. Frontiers in Molecular Biosciences, 2021, 8, 757425.	3.5	24
180	¹ H detection and dynamic nuclear polarization–enhanced NMR of Aβ ₁₋₄₂ fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	24

#	Article	IF	CITATIONS
181	Kinetics of cadmium and terbium dissociation from calmodulin and its tryptic fragments. FEBS Journal, 1986, 161, 595-601.	0.2	23
182	Binding of Ca2+ to Calbindin D9k: Structural Stability and Function at High Salt Concentration. Biochemistry, 1994, 33, 14170-14176.	2.5	23
183	Fragment complementation of calbindin D _{28k} . Protein Science, 2000, 9, 2094-2108.	7.6	23
184	Amyloid \hat{I}^2 42 fibril structure based on small-angle scattering. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
185	A Proline-Rich Region with a Highly Periodic Sequence in Streptococcal Î ² Protein Adopts the Polyproline II Structure and Is Exposed on the Bacterial Surface. Journal of Bacteriology, 2002, 184, 6376-6383.	2.2	22
186	The Aggregation Paths and Products of Aβ42 Dimers Are Distinct from Those of the Aβ42 Monomer. Biochemistry, 2016, 55, 6150-6161.	2.5	22
187	Reconstitution of Calmodulin from Domains and Subdomains: Influence of Target Peptide. Journal of Molecular Biology, 2006, 358, 870-881.	4.2	21
188	Mathematical modeling of the protein corona: implications for nanoparticulate delivery systems. Nanomedicine, 2014, 9, 851-858.	3.3	21
189	Multi-method global analysis of thermodynamics and kinetics in reconstitution of monellin. Proteins: Structure, Function and Bioinformatics, 2004, 57, 586-595.	2.6	20
190	Deamidation and disulfide bridge formation in human calbindin D28k with effects on calcium binding. Protein Science, 2005, 14, 968-979.	7.6	20
191	Cooperativity of α-Synuclein Binding to Lipid Membranes. ACS Chemical Neuroscience, 2021, 12, 2099-2109.	3.5	20
192	Amyloid-β peptide 37, 38 and 40 individually and cooperatively inhibit amyloid-β 42 aggregation. Chemical Science, 2022, 13, 2423-2439.	7.4	20
193	Redox Sensitive Cysteine Residues in Calbindin D28k Are Structurally and Functionally Important. Biochemistry, 2005, 44, 684-693.	2.5	19
194	Aggregation and Fibril Structure of Al² _{M01–42} and Al² _{1–42} . Biochemistry, 2017, 56, 4850-4859.	2.5	19
195	Proliferation of Tau 304–380 Fragment Aggregates through Autocatalytic Secondary Nucleation. ACS Chemical Neuroscience, 2021, 12, 4406-4415.	3.5	19
196	Calmodulin Transduces Ca ²⁺ Oscillations into Differential Regulation of Its Target Proteins. ACS Chemical Neuroscience, 2013, 4, 601-612.	3.5	18
197	A microfluidic platform for quantitative measurements of effective protein charges and single ion binding in solution. Physical Chemistry Chemical Physics, 2015, 17, 12161-12167.	2.8	18
198	3D MAS NMR Experiment Utilizing Through-Space ¹⁵ N– ¹⁵ N Correlations. Journal of the American Chemical Society, 2017, 139, 6518-6521.	13.7	18

#	Article	IF	CITATIONS
199	Cyanylated Cysteine Reports Site-Specific Changes at Protein–Protein-Binding Interfaces Without Perturbation. Biochemistry, 2018, 57, 3702-3712.	2.5	18
200	Fibril Charge Affects α-Synuclein Hydrogel Rheological Properties. Langmuir, 2019, 35, 16536-16544.	3.5	18
201	Anomalous Salt Dependence Reveals an Interplay of Attractive and Repulsive Electrostatic Interactions in α-synuclein Fibril Formation. QRB Discovery, 2020, 1, .	1.6	18
202	Molecular Design of Specific Metalâ€Binding Peptide Sequences from Protein Fragments: Theory and Experiment. Chemistry - A European Journal, 2008, 14, 7836-7846.	3.3	16
203	Effects of Metal-Binding Loop Mutations on Ligand Binding to Calcium- and Integrin-Binding Protein 1. Evolution of the EF-Hand?. Biochemistry, 2008, 47, 1696-1707.	2.5	16
204	Conformational Ensembles of Calmodulin Revealed by Nonperturbing Site-Specific Vibrational Probe Groups. Journal of Physical Chemistry A, 2018, 122, 2947-2955.	2.5	16
205	Protein–protein interactions in AQP regulation – biophysical characterization of AQP0–CaM and AQP2–LIP5 complex formation. Faraday Discussions, 2018, 209, 35-54.	3.2	16
206	Kinetic Analysis of Amyloid Formation. Methods in Molecular Biology, 2018, 1779, 181-196.	0.9	16
207	Lipid-protein interactions in amyloid formation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 455-457.	2.3	16
208	Increased Secondary Nucleation Underlies Accelerated Aggregation of the Four-Residue N-Terminally Truncated Aβ42 Species Aβ5–42. ACS Chemical Neuroscience, 2019, 10, 2374-2384.	3.5	16
209	Structural properties of semenogelin I. FEBS Journal, 2007, 274, 4503-4510.	4.7	15
210	Zn ²⁺ binding to human calbindin D _{28k} and the role of histidine residues. Protein Science, 2008, 17, 760-767.	7.6	15
211	Förster resonance energy transfer studies of calmodulin produced by native protein ligation reveal interâ€domain electrostatic repulsion. FEBS Journal, 2013, 280, 2675-2687.	4.7	15
212	Proton-Assisted Recoupling (PAR) in Peptides and Proteins. Journal of Physical Chemistry B, 2017, 121, 10804-10817.	2.6	15
213	A Calbindin D9k Mutant with Reduced Calcium Affinity and Enhanced Cooperativity. Metal Ion Binding, Stability, and Structural Studies. Biochemistry, 1994, 33, 12478-12486.	2.5	14
214	Green fluorescence induced by EFâ€hand assembly in a split GFP system. Protein Science, 2009, 18, 1221-1229.	7.6	14
215	Binding of Charged Ligands to Macromolecules. Anomalous Salt Dependence. Journal of Physical Chemistry B, 2005, 109, 2007-2013.	2.6	13
216	Protein GB1 Folding and Assembly from Structural Elements. International Journal of Molecular Sciences, 2009, 10, 1552-1566.	4.1	13

#	Article	IF	CITATIONS
217	pKa Values for the Unfolded State under Native Conditions Explain the pH-Dependent Stability of PGB1. Biophysical Journal, 2010, 99, 3365-3373.	0.5	13
218	A microfluidic strategy for the detection of membrane protein interactions. Lab on A Chip, 2020, 20, 3230-3238.	6.0	13
219	pHâ€Responsive Capsules with a Fibril Scaffold Shell Assembled from an Amyloidogenic Peptide. Small, 2021, 17, e2007188.	10.0	13
220	Interactions in the native state of monellin, which play a protective role against aggregation. Molecular BioSystems, 2011, 7, 521-532.	2.9	12
221	Molecular Determinants of S100B Oligomer Formation. PLoS ONE, 2011, 6, e14768.	2.5	12
222	Haemophilus influenzae surface fibril (Hsf) is a unique twisted hairpin-like trimeric autotransporter. International Journal of Medical Microbiology, 2015, 305, 27-37.	3.6	12
223	Disaggregation of gold nanoparticles by Daphnia magna. Nanotoxicology, 2018, 12, 885-900.	3.0	12
224	Expression and Purification of Human Calbindin D28k. Protein Expression and Purification, 1999, 15, 265-270.	1.3	11
225	Protein Folding through Kinetic Discrimination. Journal of the American Chemical Society, 2007, 129, 8481-8486.	13.7	11
226	Calcium Binding and Disulfide Bonds Regulate the Stability of Secretagogin towards Thermal and Urea Denaturation. PLoS ONE, 2016, 11, e0165709.	2.5	11
227	Analysis of the length distribution of amyloid fibrils by centrifugal sedimentation. Analytical Biochemistry, 2016, 504, 7-13.	2.4	11
228	The Molecular Basis of Human IgG-Mediated Enhancement of C4b-Binding Protein Recruitment to Group A Streptococcus. Frontiers in Immunology, 2019, 10, 1230.	4.8	11
229	Symmetrical Stabilization of Bound Ca2+Ions in a Cooperative Pair of EF-Hands through Hydrogen Bonding of Coordinating Water Molecules in Calbindin D9kâ€. Biochemistry, 2001, 40, 9887-9895.	2.5	10
230	Kinetics of calcium binding to calbindin mutants. FEBS Journal, 1988, 177, 47-52.	0.2	10
231	Binding of Calcium to Anticoagulant Protein S: Role of the Fourth EGF Module. Biochemistry, 2006, 45, 10682-10689.	2.5	10
232	The Structural Role of N-Linked Glycans on Human Glypican-1. Biochemistry, 2011, 50, 9377-9387.	2.5	10
233	Probing Calmodulin Protein–Protein Interactions Using High-Content Protein Arrays. Methods in Molecular Biology, 2011, 785, 289-303.	0.9	10
234	High Throughput Screening Method to Explore Protein Interactions with Nanoparticles. PLoS ONE, 2015, 10, e0136687.	2.5	10

#	Article	IF	CITATIONS
235	Expression, purification and characterisation of large quantities of recombinant human IAPP for mechanistic studies. Biophysical Chemistry, 2021, 269, 106511.	2.8	10
236	Transient Lipid-Protein Structures and Selective Ganglioside Uptake During α-Synuclein-Lipid Co-aggregation. Frontiers in Cell and Developmental Biology, 2021, 9, 622764.	3.7	10
237	Chiral Selectivity of Secondary Nucleation in Amyloid Fibril Propagation. Angewandte Chemie - International Edition, 2021, 60, 24008-24011.	13.8	10
238	TowardÂthe equilibrium and kinetics of amyloid peptide self-assembly. Current Opinion in Structural Biology, 2021, 70, 87-98.	5.7	10
239	The unhappy chaperone. QRB Discovery, 2021, 2, .	1.6	10
240	Synthesis of an N-linked glycopeptide from vitamin K-dependent protein S. Tetrahedron, 1998, 54, 11995-12006.	1.9	9
241	Rapid and Facile Purification of Apolipoprotein A-I from Human Plasma Using Thermoresponsive Nanoparticles. Journal of Biomaterials and Nanobiotechnology, 2011, 02, 258-266.	0.5	9
242	Calbindin D28k EF-Hand Ligand Binding and Oligomerization:  Four High-Affinity SitesThree Modes of Action. Biochemistry, 2005, 44, 13522-13532.	2.5	8
243	Calcium-Dependent Interaction of Calmodulin with Human 80S Ribosomes and Polyribosomes. Biochemistry, 2012, 51, 6718-6727.	2.5	8
244	Digested wheat gluten inhibits binding between leptin and its receptor. BMC Biochemistry, 2015, 16, 3.	4.4	8
245	Simplifying G Protein-Coupled Receptor Isolation with a Calcium-Dependent Fragment Complementation Affinity System. Biochemistry, 2018, 57, 4383-4390.	2.5	8
246	Expression and Purification of Intrinsically Disordered $\hat{A^2}$ Peptide and Setup of Reproducible Aggregation Kinetics Experiment. Methods in Molecular Biology, 2020, 2141, 731-754.	0.9	8
247	Truncated Semenogelin I Binds Zinc and Is Cleaved by Prostate-Specific Antigen. Journal of Andrology, 2006, 27, 542-547.	2.0	7
248	A Palette of Fluorescent Aβ42 Peptides Labelled at a Range of Surface-Exposed Sites. International Journal of Molecular Sciences, 2022, 23, 1655.	4.1	7
249	Characterization of calretinin I-II as an EF-hand, Ca2+, H+-sensing domain. Protein Science, 2005, 14, 1879-1887.	7.6	6
250	Revealing Well-Defined Soluble States during Amyloid Fibril Formation by Multilinear Analysis of NMR Diffusion Data. Journal of the American Chemical Society, 2019, 141, 18649-18652.	13.7	6
251	A method of predicting the in vitro fibril formation propensity of Aβ40 mutants based on their inclusion body levels in E. coli. Scientific Reports, 2019, 9, 3680.	3.3	6
252	Reprint of "Ganglioside lipids accelerate α-synuclein amyloid formation― Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 508-518.	2.3	6

#	Article	IF	CITATIONS
253	Protein Networks Involved in Vesicle Fusion, Transport, and Storage Revealed by Array-Based Proteomics. Methods in Molecular Biology, 2011, 781, 47-58.	0.9	6
254	Ca ²⁺ Binding in Proteins of the Calmodulin Superfamily: Cooperativity, Electrostatic Contributions and Molecular Mechanisms. Novartis Foundation Symposium, 1991, 161, 222-236.	1.1	6
255	A calbindin D _{9k} mutant containing a novel structural extension: ¹ H nuclear magnetic resonance studies. Protein Science, 1997, 6, 323-330.	7.6	5
256	Production and physicochemical characterization of acidocin D20079, a bacteriocin produced by Lactobacillus acidophilus DSM 20079. World Journal of Microbiology and Biotechnology, 2007, 23, 911-921.	3.6	5
257	Aggregate Size Dependence of Amyloid Adsorption onto Charged Interfaces. Langmuir, 2018, 34, 1266-1273.	3.5	5
258	Protein stabilization with retained function of monellin using a split GFP system. Scientific Reports, 2018, 8, 12763.	3.3	5
259	Production and Use of Recombinant AÎ ² for Aggregation Studies. Methods in Molecular Biology, 2018, 1777, 307-320.	0.9	5
260	Calmodulin complexes with brain and muscle creatine kinase peptides. Current Research in Structural Biology, 2021, 3, 121-132.	2.2	5
261	Solubility of AÎ ² 40 peptide. Jcis Open, 2021, 4, 100024.	3.2	5
262	Comparing α-Synuclein Fibrils Formed in the Absence and Presence of a Model Lipid Membrane: A Small and Wide-Angle X-Ray Scattering Study. , 2022, 1, .		5
263	An aggregation inhibitor specific to oligomeric intermediates of Aβ42 derived from phage display libraries of stable, small proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121966119.	7.1	5
264	Acceleration of α-synuclein aggregation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2017, 24, 20-21.	3.0	4
265	Letter to the Editor: Sequential1H,15N and13C NMR Assignment of Human Calbindin D28k. Journal of Biomolecular NMR, 2004, 28, 305-306.	2.8	3
266	Benefits and constrains of covalency: the role of loop length in protein stability and ligand binding. Scientific Reports, 2020, 10, 20108.	3.3	3
267	Single Step Purification of Glycogen Synthase Kinase Isoforms from Small Scale Transient Expression in HEK293 Cells with a Calcium-Dependent Fragment Complementation System. Methods in Molecular Biology, 2020, 2095, 385-396.	0.9	3
268	The Bacterial Amyloids Phenol Soluble Modulins from Staphylococcus aureus Catalyze Alpha-Synuclein Aggregation. International Journal of Molecular Sciences, 2021, 22, 11594.	4.1	3
269	High-Efficiency Expression and Purification of DNAJB6b Based on the pH-Modulation of Solubility and Denaturant-Modulation of Size. Molecules, 2022, 27, 418.	3.8	3
270	Chiral selectivity of secondary nucleation in amyloid fibril propagation. Angewandte Chemie, 0, , .	2.0	2

#	Article	IF	CITATIONS
271	Purification and HDL-like particle formation of apolipoprotein A-I after co-expression with the EDDIE mutant of Npro autoprotease. Protein Expression and Purification, 2021, 187, 105946.	1.3	2
272	On the Cluster Formation of Î \pm -Synuclein Fibrils. Frontiers in Molecular Biosciences, 2021, 8, 768004.	3.5	2
273	A folding variant of alpha-lactalbumin with bactericidal activity against Streptococcus pneumoniae. Molecular Microbiology, 2000, 36, 247-247.	2.5	1
274	NANOINTERACT: A rational approach to the interaction between nanoscale materials and living matter?. Journal of Physics: Conference Series, 2009, 170, 012040.	0.4	1
275	Guest-protein incorporation into solvent channels of a protein host crystal (hostal). Acta Crystallographica Section D: Structural Biology, 2021, 77, 471-485.	2.3	1
276	Mathematical Modeling of the Protein Corona: Implications for Nanoparticulate Delivery Systems. Frontiers in Nanobiomedical Research, 2016, , 53-65.	0.1	0