Jose R Cabrero-Antonino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2216804/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic Reductive Alcohol Etherifications with Carbonylâ€Based Compounds or CO ₂ and Related Transformations for the Synthesis of Ether Derivatives. ChemSusChem, 2021, 14, 3744-3784.	6.8	18
2	Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nature Communications, 2020, 11, 3893.	12.8	130
3	Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines. Catalysis Science and Technology, 2020, 10, 6116-6128.	4.1	15
4	Katalytische reduktive Nâ€Alkylierungen unter Verwendung von CO ₂ und Carbonsärederivaten: Aktuelle Entwicklungen. Angewandte Chemie, 2019, 131, 12950-12968.	2.0	17
5	Catalytic Reductive Nâ€Alkylations Using CO ₂ and Carboxylic Acid Derivatives: Recent Progress and Developments. Angewandte Chemie - International Edition, 2019, 58, 12820-12838.	13.8	101
6	Reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: Mechanistic insights through kinetic modelling. Chemical Engineering Journal, 2018, 351, 1129-1136.	12.7	17
7	Selective Hydrogenation of Nitriles to Primary Amines by using a Cobalt Phosphine Catalyst. ChemSusChem, 2017, 10, 842-846.	6.8	90
8	Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complex. Chemical Science, 2017, 8, 3576-3585.	7.4	181
9	A General and Highly Selective Cobalt atalyzed Hydrogenation of Nâ€Heteroarenes under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2017, 56, 3216-3220.	13.8	139
10	Synthesis of Supported Planar Iron Oxide Nanoparticles and Their Chemo- and Stereoselectivity for Hydrogenation of Alkynes. ACS Catalysis, 2017, 7, 3721-3729.	11.2	63
11	Unprecedented selective homogeneous cobalt-catalysed reductive alkoxylation of cyclic imides under mild conditions. Chemical Science, 2017, 8, 5536-5546.	7.4	31
12	Cobalt-catalysed transfer hydrogenation of quinolines and related heterocycles using formic acid under mild conditions. Catalysis Science and Technology, 2017, 7, 1981-1985.	4.1	46
13	Bimetallic nanosized solids with acid and redox properties for catalytic activation of C–C and C–H bonds. Chemical Science, 2017, 8, 689-696.	7.4	18
14	Cobalt-catalysed reductive C–H alkylation of indoles using carboxylic acids and molecular hydrogen. Chemical Science, 2017, 8, 6439-6450.	7.4	40
15	Selective Ruthenium atalyzed Reductive Alkoxylation and Amination of Cyclic Imides. Angewandte Chemie - International Edition, 2016, 55, 387-391.	13.8	29
16	A general protocol for the reductive N-methylation of amines using dimethyl carbonate and molecular hydrogen: mechanistic insights and kinetic studies. Catalysis Science and Technology, 2016, 6, 7956-7966.	4.1	60
17	Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Rutheniumâ€Catalyzed Direct Nâ€Alkylation of Amines. Angewandte Chemie - International Edition, 2016, 55, 11049-11053.	13.8	30
18	Esters, Including Triglycerides, and Hydrogen as Feedstocks for the Rutheniumâ€Catalyzed Direct Nâ€Alkylation of Amines. Angewandte Chemie, 2016, 128, 11215-11219.	2.0	13

#	Article	IF	CITATIONS
19	Efficient Base-Free Hydrogenation of Amides to Alcohols and Amines Catalyzed by Well-Defined Pincer Imidazolyl–Ruthenium Complexes. ACS Catalysis, 2016, 6, 47-54.	11.2	79
20	Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines. Chemical Science, 2016, 7, 3432-3442.	7.4	100
21	Beyond Acid Strength in Zeolites: Soft Framework Counteranions for Stabilization of Carbocations on Zeolites and Its Implication in Organic Synthesis. Angewandte Chemie - International Edition, 2015, 54, 5658-5661.	13.8	39
22	Catalytic N-Alkylation of Amines Using Carboxylic Acids and Molecular Hydrogen. Journal of the American Chemical Society, 2015, 137, 13580-13587.	13.7	72
23	Synthesis of the <i>ortho</i> / <i>meta</i> / <i>para</i> Isomers of Relevant Pharmaceutical Compounds by Coupling a Sonogashira Reaction with a Regioselective Hydration. ACS Catalysis, 2014, 4, 722-731.	11.2	30
24	Reactivity of Electron-Deficient Alkynes on Gold Nanoparticles. ACS Catalysis, 2013, 3, 1865-1873.	11.2	42
25	Oxyhalogenation of Activated Arenes with Nanocrystalline Ceria. ACS Catalysis, 2013, 3, 250-258.	11.2	32
26	Iron(III) Triflimide as a Catalytic Substitute for Gold(I) in Hydroaddition Reactions to Unsaturated Carbon–Carbon Bonds. Chemistry - A European Journal, 2013, 19, 8627-8633.	3.3	34
27	Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 10 ⁷ at Room Temperature. Science, 2012, 338, 1452-1455.	12.6	383
28	Iron atalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis and Catalysis, 2012, 354, 678-687.	4.3	65
29	Regioselective Hydration of Alkynes by Iron(III) Lewis/BrÃ,nsted Catalysis. Chemistry - A European Journal, 2012, 18, 11107-11114.	3.3	80
30	Synthesis and Stabilization of Subnanometric Gold Oxide Nanoparticles on Multiwalled Carbon Nanotubes and Their Catalytic Activity. Journal of the American Chemical Society, 2011, 133, 10251-10261.	13.7	87
31	Synthesis of Organicâ^'Inorganic Hybrid Solids with Copper Complex Framework and Their Catalytic Activity for the S-Arylation and the Azideâ^'Alkyne Cycloaddition Reactions. ACS Catalysis, 2011, 1, 147-158.	11.2	37
32	Copper(I)-catalyzed hydrophosphination of styrenes. Journal of Organometallic Chemistry, 2011, 696, 362-367.	1.8	41
33	Bifunctional solid catalysts for chemoselective hydrogenation–cyclisation–amination cascade reactions of relevance for the synthesis of pharmaceuticals. Tetrahedron, 2010, 66, 8203-8209.	1.9	33
34	Gold(I) Catalyzes the Intermolecular Hydroamination of Alkynes with Imines and Produces α,α′, <i>N</i> -Triarylbisenamines: Studies on Their Use As Intermediates in Synthesis. Journal of Organic Chemistry, 2010, 75, 7769-7780.	3.2	48
35	Ironâ€Catalysed Regio―and Stereoselective Headâ€toâ€Tail Dimerisation of Styrenes. Advanced Synthesis and Catalysis, 2010, 352, 1571-1576.	4.3	46