Tobias Rudolph

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2216555/publications.pdf

Version: 2024-02-01

41 papers 1,198 citations

304743 22 h-index 377865 34 g-index

41 all docs

41 docs citations

41 times ranked

2026 citing authors

#	Article	IF	CITATIONS
1	Selfâ€Healing Materials via Reversible Crosslinking of Poly(ethylene oxide)â€ <i>Block</i> â€Poly(furfuryl) Tj ETQq1 4921-4932.	1 0.7843 14.9	14 rgBT / <mark>Ov</mark> 107
2	Double Stimuli-Responsive Ultrafiltration Membranes from Polystyrene- <i>block</i> -poly(<i>N</i> , <i>N</i> -dimethylaminoethyl methacrylate) Diblock Copolymers. ACS Applied Materials & Diblock 3, 1492-1503.	8.0	95
3	Supramolecular three-armed star polymers via cyclodextrin host–guest self-assembly. Polymer Chemistry, 2012, 3, 3139.	3.9	74
4	Nanocellulose Aerogels for Supporting Iron Catalysts and In Situ Formation of Polyethylene Nanocomposites. Advanced Functional Materials, 2017, 27, 1605586.	14.9	57
5	Single chain selfâ€assembly of wellâ€defined heterotelechelic polymers generated by ATRP and click chemistry revisited. Journal of Polymer Science Part A, 2011, 49, 2566-2576.	2.3	50
6	Understanding Toughness in Bioinspired Cellulose Nanofibril/Polymer Nanocomposites. Biomacromolecules, 2016, 17, 2417-2426.	5.4	49
7	Reprogrammable, magnetically controlled polymeric nanocomposite actuators. Materials Horizons, 2018, 5, 861-867.	12.2	46
8	Aqueous solution behavior of combâ€shaped poly(2â€ethylâ€2â€oxazoline). Journal of Polymer Science Part A, 2013, 51, 139-148.	2.3	45
9	Homo―and diblock copolymers of poly(furfuryl glycidyl ether) by living anionic polymerization: Toward reversibly coreâ€crosslinked micelles. Journal of Polymer Science Part A, 2012, 50, 4958-4965.	2.3	44
10	Controlling Aqueous Selfâ€Assembly Mechanisms by Hydrophobic Interactions. Chemistry - A European Journal, 2014, 20, 13871-13875.	3.3	42
11	Core-crosslinked compartmentalized cylinders. Nanoscale, 2011, 3, 288-297.	5.6	41
12	Hybrid Fe3O4@amino cellulose nanoparticles in organic media – Heterogeneous ligands for atom transfer radical polymerizations. Journal of Colloid and Interface Science, 2013, 390, 25-33.	9.4	41
13	Star-Shaped Drug Carriers for Doxorubicin with POEGMA and POEtOxMA Brush-like Shells: A Structural, Physical, and Biological Comparison. Biomacromolecules, 2013, 14, 2536-2548.	5.4	40
14	Photocatalytic Hydrogen Evolution Driven by [FeFe] Hydrogenase Models Tethered to Fluorene and Silafluorene Sensitizers. Chemistry - A European Journal, 2017, 23, 334-345.	3.3	34
15	Poly(thiolactone) homo- and copolymers from maleimide thiolactone: synthesis and functionalization. Polymer Chemistry, 2015, 6, 4240-4251.	3.9	33
16	Amphiphilic star-shaped block copolymers as unimolecular drug delivery systems: investigations using a novel fungicide. Soft Matter, 2013, 9, 715-726.	2.7	32
17	Toward Anisotropic Hybrid Materials: Directional Crystallization of Amphiphilic Polyoxazoline-Based Triblock Terpolymers. ACS Nano, 2015, 9, 10085-10098.	14.6	29

Synthesis and Solution Properties of Double Hydrophilic Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td₄(oxide)-block-poly(2-18)

#	Article	IF	CITATIONS
19	Schizophrenic thermoresponsive block copolymer micelles based on LCST and UCST behavior in ethanol–water mixtures. European Polymer Journal, 2015, 69, 460-471.	5.4	25
20	Selective crosslinking or addressing of individual domains within block copolymer nanostructures. European Polymer Journal, 2016, 80, 317-331.	5.4	25
21	Reversible Actuation of Thermoplastic Multiblock Copolymers with Overlapping Thermal Transitions of Crystalline and Glassy Domains. Macromolecules, 2018, 51, 4624-4632.	4.8	25
22	Noncontinuously Responding Polymeric Actuators. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33559-33564.	8.0	23
23	A strong cationic $Br\tilde{A}_{s}$, $Br\tilde{A}_{s}$	3.9	19
24	Two-Level Shape Changes of Polymeric Microcuboids Prepared from Crystallizable Copolymer Networks. Macromolecules, 2017, 50, 2518-2527.	4.8	18
25	Controlling Actuation Performance in Physically Cross-Linked Polylactone Blends Using Polylactide Stereocomplexation. Biomacromolecules, 2020, 21, 338-348.	5.4	18
26	Synthesis and Complexation of Well-Defined Labeled Poly(N,N-dimethylaminoethyl methacrylate)s (PDMAEMA). Polymers, 2015, 7, 2478-2493.	4.5	17
27	Bisâ€hydrophilic and functional triblock terpolymers based on polyethers: Synthesis and selfâ€assembly in solution. Journal of Polymer Science Part A, 2012, 50, 2914-2923.	2.3	15
28	Amphiphilic polyether-based block copolymers as crosslinkable ligands for Au-nanoparticles. Polymer Chemistry, 2015, 6, 5633-5642.	3.9	14
29	Porous NiOx nanostructures templated by polystyrene-block-poly(2-vinylpyridine) diblock copolymer micelles. Journal of Materials Chemistry A, 2014, 2, 6158.	10.3	13
30	Star-shaped poly(2-ethyl-2-oxazoline) featuring a porphyrin core: synthesis and metal complexation. E-Polymers, 2015, 15, 227-235.	3.0	12
31	Poly(2â€vinyl pyridine)â€ <i>blockâ€</i> Poly(ethylene oxide) Featuring a Furan Group at the Block Junctionâ€"Synthesis and Functionalization. Macromolecular Rapid Communications, 2014, 35, 916-921.	3.9	11
32	Synthesis and self-assembly of poly(ferrocenyldimethylsilane)-block-poly(2-alkyl-2-oxazoline) block copolymers. Polymer Chemistry, 2015, 6, 1604-1612.	3.9	11
33	Incorporation of core–shell particles into methacrylate based composites for improvement of the mechanical properties. Polymer Chemistry, 2015, 6, 5273-5280.	3.9	10
34	Maleimide-functionalized poly(2-ethyl-2-oxazoline): synthesis and reactivity. Polymer Chemistry, 2016, 7, 2419-2426.	3.9	10
35	Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(ε-caprolactone) Networks and Enable Self-Healing. Polymers, 2018, 10, 255.	4.5	10
36	UV-induced crosslinking of the polybutadiene domains in lamellar polystyrene-block-polybutadiene block copolymer films – An in-depth study. Polymer, 2012, 53, 5641-5648.	3.8	7

TOBIAS RUDOLPH

#	ARTICLE	IF	CITATION
37	Hierarchical Selfâ€Assembly of Doubleâ€Crystalline Poly(ferrocenyldimethylsilane)â€ <i>block</i> àê€poly(2â€ <i>iso</i> â€propylâ€2â€oxazoline) (PFDMSâ€ <i>b</i> â€P <i>i</i> PrOx) Block Copolymers. Macromolecular Rapid Communications, 2015, 36, 1651-1657.	3.9	7
38	Torsional Fiber Actuators from Shape-memory Polymer. MRS Advances, 2018, 3, 3861-3868.	0.9	7
39	pHâ€Responsive Side Chains as a Tool to Control Aqueous Selfâ€Assembly Mechanisms. Chemistry - A European Journal, 2020, 26, 606-610.	3.3	7
40	Biocompatible Multishell Architecture for Iron Oxide Nanoparticles. Macromolecular Bioscience, 2013, 13, 93-105.	4.1	5
41	Polymeric Microcuboids Programmable for Temperatureâ€Memory. Macromolecular Materials and Engineering, 2020, 305, 2000333.	3.6	4