Jerrel L Yakel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/221632/publications.pdf

Version: 2024-02-01

94433 95266 4,922 75 37 68 h-index citations g-index papers 77 77 77 4606 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Nicotinic receptors in the brain: correlating physiology with function. Trends in Neurosciences, 1999, 22, 555-561.	8.6	401
2	Nicotinic ACh receptors as therapeutic targets in CNS disorders. Trends in Pharmacological Sciences, 2015, 36, 96-108.	8.7	389
3	Desensitization of nicotinic ACh receptors: shaping cholinergic signaling. Trends in Neurosciences, 2005, 28, 371-378.	8.6	308
4	Cholinergic modulation of the hippocampal region and memory function. Journal of Neurochemistry, 2017, 142, 111-121.	3.9	273
5	5-HT3 receptors mediate rapid responses in cultured hippocampus and a clonal cell line. Neuron, 1988, 1, 615-621.	8.1	254
6	Timing-Dependent Septal Cholinergic Induction of Dynamic Hippocampal Synaptic Plasticity. Neuron, 2011, 71, 155-165.	8.1	251
7	Functional nicotinic ACh receptors on interneurones in the rat hippocampus. Journal of Physiology, 1997, 504, 603-610.	2.9	245
8	Nicotinic acetylcholine receptor-mediated calcium signaling in the nervous system. Acta Pharmacologica Sinica, 2009, 30, 673-680.	6.1	186
9	Rat nicotinic ACh receptor α7 and β2 subunits coâ€assemble to form functional heteromeric nicotinic receptor channels. Journal of Physiology, 2002, 540, 425-434.	2.9	181
10	Functional and molecular characterization of neuronal nicotinic ACh receptors in rat CA1 hippocampal neurons. Journal of Physiology, 2000, 527, 515-528.	2.9	173
11	Functional Mapping and Ca ²⁺ Regulation of Nicotinic Acetylcholine Receptor Channels in Rat Hippocampal CA1 Neurons. Journal of Neuroscience, 2003, 23, 9024-9031.	3.6	120
12	Functional $\hat{l}\pm7$ Nicotinic ACh Receptors on Astrocytes in Rat Hippocampal CA1 Slices. Journal of Molecular Neuroscience, 2012, 48, 14-21.	2.3	97
13	A Structural and Mutagenic Blueprint for Molecular Recognition of Strychnine and d-Tubocurarine by Different Cys-Loop Receptors. PLoS Biology, 2011, 9, e1001034.	5.6	92
14	Heteromeric $\hat{1}\pm7\hat{1}^22$ Nicotinic Acetylcholine Receptors in the Brain. Trends in Pharmacological Sciences, 2016, 37, 562-574.	8.7	79
15	Cholinergic Coordination of Presynaptic and Postsynaptic Activity Induces Timing-Dependent Hippocampal Synaptic Plasticity. Journal of Neuroscience, 2012, 32, 12337-12348.	3.6	77
16	Cholinergic receptors: functional role of nicotinic ACh receptors in brain circuits and disease. Pflugers Archiv European Journal of Physiology, 2013, 465, 441-450.	2.8	69
17	Regulation of Nicotinic Acetylcholine Receptor Channel Function by Acetylcholinesterase Inhibitors in Rat Hippocampal CA1 Interneurons. Molecular Pharmacology, 2004, 66, 658-666.	2.3	67
18	Molecular actions of smoking cessation drugs at $\hat{l}\pm4\hat{l}^22$ nicotinic receptors defined in crystal structures of a homologous binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9173-9178.	7.1	65

#	Article	IF	Citations
19	Inhibition of Neuronal Nicotinic Acetylcholine Receptor Channels Expressed in <1>Xenopus Oocytes by β-Amyloid_{1–42} Peptide. Journal of Molecular Neuroscience, 2005, 27, 013-022.	2.3	62
20	A novel role of NLRP3-generated IL- $1\hat{l}^2$ in the acute-chronic transition of peripheral lipopolysaccharide-elicited neuroinflammation: implications for sepsis-associated neurodegeneration. Journal of Neuroinflammation, 2020, 17, 64.	7.2	60
21	Effects of neuronal nicotinic acetylcholine receptor allosteric modulators in animal behavior studies. Biochemical Pharmacology, 2013, 86, 1054-1062.	4.4	59
22	Presynaptic Â7 Nicotinic Acetylcholine Receptors Enhance Hippocampal Mossy Fiber Glutamatergic Transmission via PKA Activation. Journal of Neuroscience, 2014, 34, 124-133.	3.6	59
23	The effect of $\hat{l}\pm7$ nicotinic receptor activation on glutamatergic transmission in the hippocampus. Biochemical Pharmacology, 2015, 97, 439-444.	4.4	59
24	Nicotinic ACh Receptors in the Hippocampus: Role in Excitability and Plasticity. Nicotine and Tobacco Research, 2012, 14, 1249-1257.	2.6	56
25	Septal cholinergic neurons gate hippocampal output to entorhinal cortex via oriens lacunosum moleculare interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1886-E1895.	7.1	55
26	The $\hat{l}\pm7$ nicotinic acetylcholine receptor function in hippocampal neurons is regulated by the lipid composition of the plasma membrane. Journal of Physiology, 2011, 589, 3163-3174.	2.9	50
27	Aromatic residues at position 55 of rat $\hat{1}\pm7$ nicotinic acetylcholine receptors are critical for maintaining rapid desensitization. Journal of Physiology, 2008, 586, 1105-1115.	2.9	49
28	Nicotinic ACh receptors in the hippocampal circuit; functional expression and role in synaptic plasticity. Journal of Physiology, 2014, 592, 4147-4153.	2.9	49
29	Functional somato-dendritic $\hat{l}\pm 7$ -containing nicotinic acetylcholine receptors in the rat basolateral amygdala complex. Journal of Physiology, 2006, 576, 865-872.	2.9	48
30	Single channel properties of neuronal nicotinic ACh receptors in stratum radiatum interneurons of rat hippocampal slices. Journal of Physiology, 2000, 527, 507-513.	2.9	46
31	Crystal Structures of a Cysteine-modified Mutant in Loop D of Acetylcholine-binding Protein. Journal of Biological Chemistry, 2011, 286, 4420-4428.	3.4	46
32	Ca2+permeability of nicotinic acetylcholine receptors in rat hippocampal CA1 interneurones. Journal of Physiology, 2005, 566, 759-768.	2.9	45
33	Allosteric Modulator Desformylflustrabromine Relieves the Inhibition of α2β2 and α4β2 Nicotinic Acetylcholine Receptors by β-Amyloid1–42 Peptide. Journal of Molecular Neuroscience, 2011, 45, 42-47.	2.3	45
34	5-HT3 receptors in the CNS: 3B or not 3B?. Trends in Pharmacological Sciences, 2003, 24, 157-160.	8.7	43
35	Gating of nicotinic ACh receptors; new insights into structural transitions triggered by agonist binding that induce channel opening. Journal of Physiology, 2007, 584, 727-733.	2.9	42
36	Activation of $\hat{l}\pm7$ nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons. Neuropharmacology, 2015, 95, 405-414.	4.1	39

#	Article	IF	CITATIONS
37	Gating of nicotinic ACh receptors: latest insights into ligand binding and function. Journal of Physiology, 2010, 588, 597-602.	2.9	38
38	Allosteric modulators of the $\hat{1}\pm4\hat{1}^22$ subtype of neuronal nicotinic acetylcholine receptors. Biochemical Pharmacology, 2011, 82, 952-958.	4.4	38
39	Serotonin 5â€HT 3 receptors in rat CA1 hippocampal interneurons: functional and molecular characterization. Journal of Physiology, 2002, 544, 715-726.	2.9	37
40	Activation of the $\hat{l}\pm7$ nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT1a receptor antagonist. Neuropharmacology, 2013, 70, 35-42.	4.1	37
41	Hippocampus and Entorhinal Cortex Recruit Cholinergic and NMDA Receptors Separately to Generate Hippocampal Theta Oscillations. Cell Reports, 2017, 21, 3585-3595.	6.4	37
42	Dendritic Ca2+signalling due to activation of \hat{l} ±7-containing nicotinic acetylcholine receptors in rat hippocampal neurons. Journal of Physiology, 2007, 582, 597-611.	2.9	35
43	Characterization of a Nicotine-Sensitive Neuronal Population in Rat Entorhinal Cortex. Journal of Neuroscience, 2009, 29, 10436-10448.	3.6	34
44	Identification and Functional Characterization of a Novel Acetylcholine-Binding Protein from the Marine Annelid <i>Capitella teleta</i> . Biochemistry, 2010, 49, 2279-2287.	2.5	28
45	Research tool: validation of floxed $\hat{l}\pm7$ nicotinic acetylcholine receptor conditional knockout mice using <i>in vitro</i> and <i>in vivo</i> approaches. Journal of Physiology, 2014, 592, 3201-3214.	2.9	26
46	Paired-pulse potentiation of $\hat{l}\pm 7$ -containing nAChRs in rat hippocampal CA1 stratum radiatum interneurones. Journal of Physiology, 2005, 568, 881-889.	2.9	24
47	Genetic identification of a population of noradrenergic neurons implicated in attenuation of stress-related responses. Molecular Psychiatry, 2019, 24, 710-725.	7.9	24
48	The $\hat{l}\pm7$ nicotinic acetylcholine receptors regulate hippocampal adult-neurogenesis in a sexually dimorphic fashion. Brain Structure and Function, 2019, 224, 829-846.	2.3	23
49	Hippocampal Interneuronal α7 nAChRs Modulate Theta Oscillations in Freely Moving Mice. Cell Reports, 2020, 31, 107740.	6.4	23
50	The Nicotinic $\hat{l}\pm 4$ Receptor Subunit Contributes to the Lining of the Ion Channel Pore When Expressed with the 5-HT3 Receptor Subunit. Journal of Biological Chemistry, 1999, 274, 3934-3936.	3.4	22
51	Rapid desensitization of the rat α7 nAChR is facilitated by the presence of a proline residue in the outer βâ€sheet. Journal of Physiology, 2010, 588, 4415-4429.	2.9	22
52	A mutation in the extracellular domain of the $\hat{l}\pm7$ nAChR reduces calcium permeability. Pflugers Archiv European Journal of Physiology, 2014, 466, 1571-1579.	2.8	21
53	$\hat{l}\pm7$ nicotinic acetylcholine receptors in the hippocampal circuit: taming complexity. Trends in Neurosciences, 2022, 45, 145-157.	8.6	21
54	Structural Determinates for Apolipoprotein E-Derived Peptide Interaction with the $\hat{l}\pm7$ Nicotinic Acetylcholine Receptor. Molecular Pharmacology, 2007, 72, 838-849.	2.3	20

#	Article	IF	CITATIONS
55	Functional and molecular characterization of neuronal nicotinic ACh receptors in rat hippocampal interneurons. Progress in Brain Research, 2004, 145, 95-107.	1.4	19
56	Ca ²⁺ influx through voltageâ€gated Ca ²⁺ channels regulates 5â€HT ₃ receptor channel desensitization in rat glioma × mouse neuroblastoma hybrid NG108–15 cells. Journal of Physiology, 1998, 510, 361-370.	2.9	18
57	Inhibition of α7â€containing nicotinic ACh receptors by muscarinic M ₁ ACh receptors in rat hippocampal CA1 interneurones in slices. Journal of Physiology, 2009, 587, 1033-1042.	2.9	16
58	Allosteric Modulation of Related Ligand-Gated Ion Channels Synergistically Induces Long-Term Potentiation in the Hippocampus and Enhances Cognition. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 908-915.	2.5	16
59	Absolute Configuration and Pharmacology of the Poison Frog Alkaloid Phantasmidine. Journal of Natural Products, 2018, 81, 1029-1035.	3.0	14
60	Hippocampal infusions of MARCKS peptides impair memory of rats on the radial-arm maze. Brain Research, 2010, 1308, 147-152.	2.2	12
61	Advances and hold-ups in the study of structure, function and regulation of Cys-loop ligand-gated ion channels and receptors. Journal of Physiology, 2010, 588, 555-556.	2.9	11
62	Loss of $\hat{l}\pm7$ nicotinic acetylcholine receptors in GABAergic neurons causes sex-dependent decreases in radial glia-like cell quantity and impairments in cognitive and social behavior. Brain Structure and Function, 2021, 226, 365-379.	2.3	10
63	Inducing theta oscillations in the entorhinal hippocampal network in vitro. Brain Structure and Function, 2017, 222, 943-955.	2.3	7
64	Inhibitory interneurons in hippocampus. Cell Biochemistry and Biophysics, 1999, 31, 207-218.	1.8	6
65	Functional α7 ontaining nicotinic acetylcholine receptors localize to cell bodies and proximal dendrites in the rat substantia nigra pars reticulata. Journal of Physiology, 2008, 586, 1365-1378.	2.9	6
66	Differential signalling induced by α7 nicotinic acetylcholine receptors in hippocampal dentate gyrus <i>in vitro</i> and <i>in vivo</i> Journal of Physiology, 2021, 599, 4687-4704.	2.9	6
67	Levamisole: A Positive Allosteric Modulator for the α3β4 Nicotinic Acetylcholine Receptors Prevents Weight Gain in the CD-1 Mice on a High Fat Diet. Current Pharmaceutical Design, 2017, 23, 1869-1872.	1.9	6
68	Cholinergic Regulation of Hippocampal Theta Rhythm. Biomedicines, 2022, 10, 745.	3.2	6
69	Inhibition of Native and Recombinant Nicotinic Acetylcholine Receptors by the Myristoylated Alanine-Rich C Kinase Substrate Peptide. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 884-890.	2.5	5
70	Local cholinergic-GABAergic circuitry within the basal forebrain is modulated by galanin. Brain Structure and Function, 2017, 222, 1385-1400.	2.3	5
71	Regulation of hippocamposeptal input within the medial septum/diagonal band of Broca. Neuropharmacology, 2021, 191, 108589.	4.1	5
72	MTSEA potentiates 5-HT3 receptors containing the nicotinic $\hat{l}\pm 4$ subunit. Neuropharmacology, 1999, 38, 1913-1915.	4.1	3

#	Article	IF	CITATIONS
73	Functional Distribution and Regulation of Neuronal Nicotinic ACh Receptors in the Mammalian Brain. Receptors, 2014, , 93-114.	0.2	2
74	A subset of noradrenergic (NE) neurons defined by developmental expression of Hoxb1 have a distinct role in attenuating the behavioral response to acute stress. Molecular Psychiatry, 2019, 24, 625-625.	7.9	0
75	Dual Allosteric Modulators of Neuronal Nicotinicâ€Acetylcholine and GABAâ€A Receptors. FASEB Journal, 2010, 24, 579.5.	0.5	0