Mio Kondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2215981/publications.pdf

Version: 2024-02-01

186265 95266 4,732 74 28 68 h-index citations g-index papers 85 85 85 6031 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Molecular decoding using luminescence from an entangled porous framework. Nature Communications, 2011, 2, 168.	12.8	715
2	Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing. Science, 2013, 339, 193-196.	12.6	483
3	A pentanuclear iron catalyst designed for water oxidation. Nature, 2016, 530, 465-468.	27.8	395
4	Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nature Materials, 2012, 11, 717-723.	27.5	352
5	Heterogeneously Hybridized Porous Coordination Polymer Crystals: Fabrication of Heterometallic Core–Shell Single Crystals with an Inâ€Plane Rotational Epitaxial Relationship. Angewandte Chemie - International Edition, 2009, 48, 1766-1770.	13.8	287
6	Sequential Functionalization of Porous Coordination Polymer Crystals. Angewandte Chemie - International Edition, 2011, 50, 8057-8061.	13.8	175
7	Hybrid Catalysis Enabling Room-Temperature Hydrogen Gas Release from $\langle i \rangle N \langle i \rangle$ -Heterocycles and Tetrahydronaphthalenes. Journal of the American Chemical Society, 2017, 139, 2204-2207.	13.7	165
8	A block PCP crystal: anisotropic hybridization of porous coordination polymers by face-selective epitaxial growth. Chemical Communications, 2009, , 5097.	4.1	147
9	MOF-on-MOF heteroepitaxy: perfectly oriented [Zn2(ndc)2(dabco)]n grown on [Cu2(ndc)2(dabco)]n thin films. Dalton Transactions, 2011, 40, 4954.	3.3	146
10	Coordinatively Immobilized Monolayers on Porous Coordination Polymer Crystals. Angewandte Chemie - International Edition, 2010, 49, 5327-5330.	13.8	133
11	Localized cell stimulation by nitric oxide using a photoactive porous coordination polymer platform. Nature Communications, 2013, 4, 2684.	12.8	122
12	Design of molecular water oxidation catalysts with earth-abundant metal ions. Chemical Society Reviews, 2021, 50, 6790-6831.	38.1	102
13	Porous Coordination Polymer Hybrid Device with Quartz Oscillator: Effect of Crystal Size on Sorption Kinetics. Journal of the American Chemical Society, 2011, 133, 11932-11935.	13.7	98
14	Rhodium–Organic Cuboctahedra as Porous Solids with Strong Binding Sites. Inorganic Chemistry, 2016, 55, 10843-10846.	4.0	97
15	Metal-Organic Cuboctahedra for Synthetic Ion Channels with Multiple Conductance States. CheM, 2017, 2, 393-403.	11.7	89
16	Function-Integrated Ru Catalyst for Photochemical CO ₂ Reduction. Journal of the American Chemical Society, 2018, 140, 16899-16903.	13.7	60
17	C(sp ³)â^'H Cyanation Promoted by Visibleâ€Light Photoredox/Phosphate Hybrid Catalysis. Chemistry - A European Journal, 2018, 24, 8051-8055.	3.3	59
18	Control over the nucleation process determines the framework topology of porous coordination polymers. CrystEngComm, 2010, 12, 2350.	2.6	55

#	Article	IF	CITATIONS
19	Water Oxidation Catalysts Constructed by Biorelevant First-row Metal Complexes. Chemistry Letters, 2016, 45, 1220-1231.	1.3	50
20	Oxygen Evolution Catalyzed by a Mononuclear Ruthenium Complex Bearing Pendant SO ₃ ^{â^} Groups. Angewandte Chemie - International Edition, 2015, 54, 7981-7984.	13.8	49
21	Targeted functionalisation of a hierarchically-structured porous coordination polymer crystal enhances its entire function. Chemical Communications, 2012, 48, 6472.	4.1	48
22	Electrocatalytic Water Oxidation by a Tetranuclear Copper Complex. ChemPlusChem, 2016, 81, 1123-1128.	2.8	40
23	Pentanuclear iron catalysts for water oxidation: substituents provide two routes to control onset potentials. Chemical Science, 2019, 10, 4628-4639.	7.4	39
24	Photocatalytic redox-neutral hydroxyalkylation of <i>N</i> -heteroaromatics with aldehydes. Chemical Science, 2020, 11, 12206-12211.	7.4	35
25	Counterion-Dependent Valence Tautomerization of Ferrocenyl-Conjugated Pyrylium Salts. Journal of the American Chemical Society, 2009, 131, 12112-12124.	13.7	33
26	A mononuclear ruthenium complex showing multiple proton-coupled electron transfer toward multi-electron transfer reactions. Dalton Transactions, 2012, 41, 13081.	3.3	32
27	Low-overpotential CO ₂ reduction by a phosphine-substituted Ru(<scp>ii</scp>) polypyridyl complex. Chemical Communications, 2018, 54, 6915-6918.	4.1	30
28	Quick and Easy Method to Dramatically Improve the Electrochemical CO ₂ Reduction Activity of an Iron Porphyrin Complex. Angewandte Chemie - International Edition, 2021, 60, 22070-22074.	13.8	29
29	Guest-Induced Instant and Reversible Crystal-to-Crystal Transformation of 1,4-Bis(ferrocenylethynyl)anthraquinone. Angewandte Chemie - International Edition, 2006, 45, 5461-5464.	13.8	28
30	Protonationâ€Induced Cyclocondensation of 1â€Aryl Ethynylanthraquinones: Expanding the Ï€â€Conjugation. Angewandte Chemie - International Edition, 2007, 46, 6271-6274.	13.8	28
31	Syntheses and CO2 reduction activities of π-expanded/extended iron porphyrin complexes. Journal of Biological Inorganic Chemistry, 2017, 22, 713-725.	2.6	28
32	Programmed crystallization via epitaxial growth and ligand replacement towards hybridizing porous coordination polymer crystals. Dalton Transactions, 2013, 42, 15868.	3.3	27
33	Periodic molecular boxes in entangled enantiomorphic lcy nets. Chemical Communications, 2010, 46, 4142.	4.1	26
34	Trapping of a Spatial Transient State During the Framework Transformation of a Porous Coordination Polymer. Journal of the American Chemical Society, 2014, 136, 4938-4944.	13.7	24
35	Electrochemical Behavior of Phosphine-Substituted Ruthenium(II) Polypyridine Complexes with a Single Labile Ligand. Inorganic Chemistry, 2014, 53, 7214-7226.	4.0	23
36	Arene–perfluoroarene interactions for crystal engineering of metal complexes: Controlled self-assembly of paddle-wheel dimers. CrystEngComm, 2013, 15, 6122.	2.6	20

#	Article	IF	CITATIONS
37	Pentanuclear Scaffold: A Molecular Platform for Small-Molecule Conversions. Accounts of Chemical Research, 2020, 53, 2140-2151.	15.6	18
38	Three Distinct Redox States of an Oxoâ€Bridged Dinuclear Ruthenium Complex. Angewandte Chemie - International Edition, 2014, 53, 11519-11523.	13.8	17
39	Syntheses and properties of phosphine-substituted ruthenium(<scp>ii</scp>) polypyridine complexes with nitrogen oxides. Dalton Transactions, 2015, 44, 17189-17200.	3.3	17
40	Development of a framework catalyst for photocatalytic hydrogen evolution. Chemical Communications, 2018, 54, 1174-1177.	4.1	17
41	Benzo[<i>e</i>]pyrene Skeleton Dipyrylium Dication with a Strong Donor–Acceptor–Donor Interaction, and Its Twoâ€Electron Reduced Molecule. Chemistry - A European Journal, 2011, 17, 14010-14019.	3.3	16
42	Dispersed Ru nanoclusters transformed from a grafted trinuclear Ru complex on SiO2 for selective alcohol oxidation. Dalton Transactions, 2013, 42, 12611.	3.3	15
43	Oxygen Evolution Catalyzed by a Mononuclear Ruthenium Complex Bearing Pendant SO ₃ ^{â^²} Groups. Angewandte Chemie, 2015, 127, 8092-8095.	2.0	15
44	Alcohol- and acid-causing reversible switching of near-infrared absorption and luminescence in a donor–acceptor conjugated system. Chemical Communications, 2009, , 1993.	4.1	14
45	Porous frameworks constructed by non-covalent linking of substitution-inert metal complexes. Dalton Transactions, 2015, 44, 15334-15342.	3.3	14
46	Electrochemical analysis of iron-porphyrin-catalyzed CO2 reduction under photoirradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 313, 143-148.	3.9	14
47	Electrochemical Polymerization Provides a Functionâ€Integrated System for Water Oxidation. Angewandte Chemie - International Edition, 2021, 60, 5965-5969.	13.8	13
48	Modulation of Selfâ€Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO ₂ Reduction. Small, 2021, 17, e2006150.	10.0	13
49	Effect of metal ion substitution on the catalytic activity of a pentanuclear metal complex. Dalton Transactions, 2020, 49, 1384-1387.	3.3	12
50	Electrochemical response of metal complexes in homogeneous solution under photoirradiation. Scientific Reports, 2014, 4, 5327.	3.3	11
51	Quick and Easy Method to Dramatically Improve the Electrochemical CO 2 Reduction Activity of an Iron Porphyrin Complex. Angewandte Chemie, 2021, 133, 22241-22245.	2.0	10
52	Synthesis of π-Conjugated Ferrocene-Anthraquinone Alternating Polymers and their Protonation Reactions. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 135-141.	3.7	8
53	Protonation-induced Cyclization of 1,8-Bis(arylethynyl)anthraquinones: Monopyrylium Salt Formation and Intensification of Donor–Acceptor Interaction. Chemistry Letters, 2011, 40, 1456-1458.	1.3	8
54	Copper(<scp>ii</scp>) tetrakis(pentafluorophenyl)porphyrin: highly active copper-based molecular catalysts for electrochemical CO ₂ reduction. Chemical Communications, 2022, 58, 2975-2978.	4.1	8

#	Article	IF	CITATIONS
55	Thioacetyl-Terminated Ferrocene-Anthraquinone Conjugates: Synthesis, Photo- and Electrochemical Properties Triggered by Protonation-Induced Intramolecular Electron Transfer. Molecules, 2010, 15, 150-163.	3.8	7
56	Visible light-driven CO ₂ reduction with a Ru polypyridyl complex bearing an N-heterocyclic carbene moiety. Chemical Communications, 2022, 58, 5229-5232.	4.1	7
57	Near-IR Light-Induced Electron Transfer via Dynamic Quenching. Journal of Physical Chemistry C, 2018, 122, 11282-11287.	3.1	6
58	Fe, Ru, and Os complexes with the same molecular framework: comparison of structures, properties and catalytic activities. Faraday Discussions, 2017, 198, 181-196.	3.2	5
59	Electrochemical Polymerization Provides a Functionâ€Integrated System for Water Oxidation. Angewandte Chemie, 2021, 133, 6030-6034.	2.0	5
60	Dirhodium-Based Supramolecular Framework Catalyst for Visible-Light-Driven Hydrogen Evolution. Inorganic Chemistry, 2021, 60, 12634-12643.	4.0	5
61	Electrochemical measurements of molecular compounds in homogeneous solution under photoirradiation. Coordination Chemistry Reviews, 2018, 374, 416-429.	18.8	3
62	Rational Synthetic Strategy for Heterometallic Multinuclear Complexes. Chemistry Letters, 2020, 49, 125-128.	1.3	3
63	Photochemical hydrogen production based on the HCOOH/CO2 cycle promoted by a pentanuclear cobalt complex. Chemical Communications, 2022, , .	4.1	3
64	Bridging coordination of acenaphthylene to a Pd ₃ chain or a Pd ₄ sheet cluster. Dalton Transactions, 2022, 51, 1901-1906.	3.3	3
65	Synthesis and Electrocatalytic CO2 Reduction Activity of an Iron Porphyrin Complex Bearing a Hydroquinone Moiety. Chemistry Letters, 2022, 51, 224-226.	1.3	3
66	Synthesis and structural characterization of centrosymmetric multinuclear nickel(II) complexes with neutral tetradentate N6-ligand. Transition Metal Chemistry, 2021, 46, 255-262.	1.4	2
67	Fabrication of Functionâ€Integrated Water Oxidation Catalysts by Electrochemical Polymerization of Ruthenium Complexes. ChemElectroChem, 2022, 9, e202101363.	3.4	2
68	1,4-Bis[2-(4-ferrocenylphenyl)ethynyl]anthraquinone from synchrotron X-ray powder diffraction. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 696-703.	0.4	1
69	Possibility of Dielectric Material: Magnetic Resonance Study of Oxoâ€Bridged Dinuclear Ruthenium Mixedâ€Valence Complex. ChemistrySelect, 2018, 3, 10526-10531.	1.5	1
70	Protonâ€Coupled Electron Transfer Induced by Nearâ€Infrared Light. Chemistry - an Asian Journal, 2019, 14, 2806-2809.	3.3	1
71	Electrochemical Polymerization of a Carbazoleâ€√ethered Cobalt Phthalocyanine for Electrocatalytic Water Oxidation. ChemNanoMat, 0, , .	2.8	1
72	Fabrication of a Functionâ€Integrated Water Oxidation Catalyst through the Electrochemical Polymerization of Ruthenium Complexes. ChemElectroChem, 2022, 9, .	3.4	1

#	Article	IF	CITATIONS
73	Innenrücktitelbild: Electrochemical Polymerization Provides a Functionâ€Integrated System for W Oxidation (Angew. Chem. 11/2021). Angewandte Chemie, 2021, 133, 6251-6251.	ater 2.0	O
74	Carbon Dioxide Reduction: Modulation of Selfâ€Assembly Enhances the Catalytic Activity of Iron Porphyrin for CO ₂ Reduction (Small 22/2021). Small, 2021, 17, 2170110.	10.0	0