
Stephen C Whisson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2214946/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature, 2009, 461, 393-398.	27.8	1,405
2	A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature, 2007, 450, 115-118.	27.8	760
3	Differential Recognition of Highly Divergent Downy Mildew Avirulence Gene Alleles by RPP1 Resistance Genes from Two Arabidopsis Lines. Plant Cell, 2005, 17, 1839-1850.	6.6	416
4	An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7766-7771.	7.1	414
5	<i>Phytophthora infestans</i> effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9909-9914.	7.1	412
6	An RxLR Effector from Phytophthora infestans Prevents Re-localisation of Two Plant NAC Transcription Factors from the Endoplasmic Reticulum to the Nucleus. PLoS Pathogens, 2013, 9, e1003670.	4.7	210
7	Presence/absence, differential expression and sequence polymorphisms between <i>PiAVR2</i> and <i>PiAVR2â€like</i> in <i>Phytophthora infestans</i> determine virulence on <i>R2</i> plants. New Phytologist, 2011, 191, 763-776.	7.3	142
8	Patterns of Diversifying Selection in the Phytotoxin-like scr74 Gene Family of Phytophthora infestans. Molecular Biology and Evolution, 2005, 22, 659-672.	8.9	140
9	Cellulose Synthesis in <i>Phytophthora infestans</i> Is Required for Normal Appressorium Formation and Successful Infection of Potato. Plant Cell, 2008, 20, 720-738.	6.6	133
10	Delivery of cytoplasmic and apoplastic effectors from <i>Phytophthora infestans</i> haustoria by distinct secretion pathways. New Phytologist, 2017, 216, 205-215.	7.3	121
11	Elevated amino acid biosynthesis in Phytophthora infestans during appressorium formation and potato infection. Fungal Genetics and Biology, 2005, 42, 244-256.	2.1	110
12	A method for double-stranded RNA-mediated transient gene silencing inPhytophthora infestans. Molecular Plant Pathology, 2005, 6, 153-163.	4.2	108
13	Mandipropamid targets the cellulose synthaseâ€ŀike PiCesA3 to inhibit cell wall biosynthesis in the oomycete plant pathogen, <i>Phytophthora infestans</i> . Molecular Plant Pathology, 2010, 11, 227-243.	4.2	108
14	The cell biology of late blight disease. Current Opinion in Microbiology, 2016, 34, 127-135.	5.1	106
15	Secreted pectin monooxygenases drive plant infection by pathogenic oomycetes. Science, 2021, 373, 774-779.	12.6	106
16	Gene Expression Profiling During Asexual Development of the Late Blight Pathogen <i>Phytophthora infestans</i> Reveals a Highly Dynamic Transcriptome. Molecular Plant-Microbe Interactions, 2008, 21, 433-447.	2.6	105
17	Plasmodium falciparum and Hyaloperonospora parasitica effector translocation motifs are functional in Phytophthora infestans. Microbiology (United Kingdom), 2008, 154, 3743-3751.	1.8	94
18	Profiling and quantifying differential gene transcription in Phytophthora infestans prior to and during the early stages of potato infection. Fungal Genetics and Biology, 2003, 40, 4-14.	2.1	92

STEPHEN C WHISSON

#	Article	IF	CITATIONS
19	A novel <i>Phytophthora infestans</i> haustorium-specific membrane protein is required for infection of potato. Cellular Microbiology, 2008, 10, 2271-2284.	2.1	87
20	Evidence for Small RNAs Homologous to Effector-Encoding Genes and Transposable Elements in the Oomycete Phytophthora infestans. PLoS ONE, 2012, 7, e51399.	2.5	79
21	Phytophthora infestansenters the genomics era. Molecular Plant Pathology, 2001, 2, 257-263.	4.2	70
22	Sequence diversity in the large subunit of <scp>RNA</scp> polymerase <scp>I</scp> contributes to <scp>M</scp> efenoxam insensitivity in <i><scp>P</scp>hytophthora infestans</i> . Molecular Plant Pathology, 2014, 15, 664-676.	4.2	69
23	<i>Phytophthora infestans</i> RXLR effectors act in concert at diverse subcellular locations to enhance host colonization. Journal of Experimental Botany, 2019, 70, 343-356.	4.8	66
24	Evidence for involvement of Dicerâ€ike, Argonaute and histone deacetylase proteins in gene silencing in <i>Phytophthora infestans</i> . Molecular Plant Pathology, 2011, 12, 772-785.	4.2	64
25	The <i>Phytophthora infestans</i> Haustorium Is a Site for Secretion of Diverse Classes of Infection-Associated Proteins. MBio, 2018, 9, .	4.1	54
26	Devastating intimacy: the cell biology of plant– <i>Phytophthora</i> interactions. New Phytologist, 2020, 228, 445-458.	7.3	48
27	Can silencing of transposons contribute to variation in effector gene expression in <i><i>Phytophthora infestans</i></i> ?. Mobile Genetic Elements, 2012, 2, 110-114.	1.8	43
28	Spray-Induced Gene Silencing as a Potential Tool to Control Potato Late Blight Disease. Phytopathology, 2021, 111, 2168-2175.	2.2	32
29	Avirulence Protein 3a (AVR3a) from the Potato Pathogen Phytophthora infestans Forms Homodimers through Its Predicted Translocation Region and Does Not Specifically Bind Phospholipids. Journal of Biological Chemistry, 2012, 287, 38101-38109.	3.4	28
30	A novel non-protein-coding infection-specific gene family is clustered throughout the genome of Phytophthora infestans. Microbiology (United Kingdom), 2007, 153, 747-759.	1.8	27
31	Fragmentation of tRNA in Phytophthora infestans asexual life cycle stages and during host plant infection. BMC Microbiology, 2014, 14, 308.	3.3	24
32	Phytophthora sojae avirulence genes Avr4 and Avr6 are located in a 24kb, recombination-rich region of genomic DNA. Fungal Genetics and Biology, 2004, 41, 62-74.	2.1	22
33	Families of short interspersed elements in the genome of the oomycete plant pathogen, Phytophthora infestans. Fungal Genetics and Biology, 2005, 42, 351-365.	2.1	19
34	Draft Genome Sequence for the Tree PathogenPhytophthora plurivora. Genome Biology and Evolution, 2018, 10, 2432-2442.	2.5	19
35	Silencing of the PiAvr3a effector-encoding gene from Phytophthora infestans by transcriptional fusion to a short interspersed element. Fungal Biology, 2011, 115, 1225-1233.	2.5	18
36	Imaging Fluorescently Tagged Phytophthora Effector Proteins Inside Infected Plant Tissue. Methods in Molecular Biology, 2011, 712, 195-209.	0.9	18

STEPHEN C WHISSON

#	Article	IF	CITATIONS
37	Phytophthora infestans effector Pi14054 is a novel candidate suppressor of host silencing mechanisms. European Journal of Plant Pathology, 2017, 149, 771-777.	1.7	17
38	Phenotypic diversification by gene silencing in <i>Phytophthora</i> plant pathogens. Communicative and Integrative Biology, 2013, 6, e25890.	1.4	9
39	Haustorium formation and a distinct biotrophic transcriptome characterize infection of <i>Nicotiana benthamiana</i> by the tree pathogen <i>Phytophthora kernoviae</i> . Molecular Plant Pathology, 2021, 22, 954-968.	4.2	5
40	Draft genome assemblies for tree pathogens Phytophthora pseudosyringae and Phytophthora boehmeriae. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	4