Zhenyou Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2214566/publications.pdf

Version: 2024-02-01

331670 377865 2,014 37 21 34 citations h-index g-index papers 37 37 37 2654 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Development of Magnesium Borate Electrolytes: Explaining the Success of Mg[B(hfip)4]2 Salt. Energy Storage Materials, 2022, 45, 1133-1143.	18.0	39
2	Dual Role of Mo ₆ S ₈ in Polysulfide Conversion and Shuttle for Mg–S Batteries. Advanced Science, 2022, 9, e2104605.	11.2	33
3	Investigation of the Anodeâ€Electrolyte Interface in a Magnesium Fullâ€Cell with Fluorinated Alkoxyborateâ€Based Electrolyte. Batteries and Supercaps, 2022, 5, .	4.7	8
4	Designing Gel Polymer Electrolyte with Synergetic Properties for Rechargeable Magnesium Batteries. Energy Storage Materials, 2022, 48, 155-163.	18.0	21
5	Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature. Nature Communications, 2022, 13, .	12.8	32
6	A Selfâ€Conditioned Metalloporphyrin as a Highly Stable Cathode for Fast Rechargeable Magnesium Batteries. ChemSusChem, 2021, 14, 1840-1846.	6.8	17
7	Establishing a Stable Anode–Electrolyte Interface in Mg Batteries by Electrolyte Additive. ACS Applied Materials & Samp; Interfaces, 2021, 13, 33123-33132.	8.0	34
8	Surface Engineering of a Mg Electrode via a New Additive to Reduce Overpotential. ACS Applied Materials & Samp; Interfaces, 2021, 13, 37044-37051.	8.0	25
9	Modeling of Electronâ€Transfer Kinetics in Magnesium Electrolytes: Influence of the Solvent on the Battery Performance. ChemSusChem, 2021, 14, 4820-4835.	6.8	15
10	New Insight into Desodiation/Sodiation Mechanism of MoS ₂ : Sodium Insertion in Amorphous Mo–S Clusters. ACS Applied Materials & Description of MoS ₂ : Sodium Insertion in Amorphous Mo–S Clusters. ACS Applied Materials & Description of MoS ₂ : Sodium Insertion in Amorphous Mo–S Clusters. ACS Applied Materials & Description of MoS ₂ : Sodium Insertion in Amorphous Mo–S Clusters. ACS Applied Materials & Description of MoS ₂ : Sodium Insertion in Amorphous Mo–S Clusters. ACS Applied Materials & Description of MoS ₂ : Sodium Insertion in Amorphous Mo–S Clusters. ACS Applied Materials & Description of MoS ₃ : Description of MoS ₄ : Description of	8.0	7
11	Combining Quinoneâ€Based Cathode with an Efficient Borate Electrolyte for Highâ€Performance Magnesium Batteries. Batteries and Supercaps, 2021, 4, 1850-1857.	4.7	26
12	Mitigating self-discharge and improving the performance of Mg–S battery in Mg[B(hfip) ₄] ₂ electrolyte with a protective interlayer. Journal of Materials Chemistry A, 2021, 9, 25150-25159.	10.3	11
13	The Electronic Structural and Defect-Induced Absorption Properties of a Ca2B10O14F6 Crystal. Crystals, 2021, 11, 1430.	2.2	0
14	Calcium–Sulfur Batteries: Rechargeable Calcium–Sulfur Batteries Enabled by an Efficient Borateâ€Based Electrolyte (Small 39/2020). Small, 2020, 16, 2070216.	10.0	5
15	Investigation on the formation of Mg metal anode/electrolyte interfaces in Mg/S batteries with electrolyte additives. Journal of Materials Chemistry A, 2020, 8, 22998-23010.	10.3	46
16	Rechargeable Calcium–Sulfur Batteries Enabled by an Efficient Borateâ€Based Electrolyte. Small, 2020, 16, e2001806.	10.0	24
17	Multiâ€Electron Reactions Enabled by Anionâ€Based Redox Chemistry for Highâ€Energy Multivalent Rechargeable Batteries. Angewandte Chemie - International Edition, 2020, 59, 11483-11490.	13.8	91
18	Multiâ€Electron Reactions Enabled by Anionâ€Based Redox Chemistry for Highâ€Energy Multivalent Rechargeable Batteries. Angewandte Chemie, 2020, 132, 11580-11587.	2.0	15

#	Article	IF	Citations
19	Understanding Structure Changes during Cycling of MoS2-based Mg Batteries. Microscopy and Microanalysis, 2019, 25, 2042-2043.	0.4	0
20	Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy and Environmental Science, 2019, 12, 3496-3501.	30.8	184
21	High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochemistry Communications, 2019, 100, 121-125.	4.7	125
22	Hetero-layered MoS2/C composites enabling ultrafast and durable Na storage. Energy Storage Materials, 2019, 21, 115-123.	18.0	46
23	Hierarchical MoS ₂ –carbon porous nanorods towards atomic interfacial engineering for high-performance lithium storage. Journal of Materials Chemistry A, 2019, 7, 7553-7564.	10.3	31
24	Insights into the electrochemical processes of rechargeable magnesium–sulfur batteries with a new cathode design. Journal of Materials Chemistry A, 2019, 7, 25490-25502.	10.3	53
25	Intercalation of Solvated Magnesium-lons into Layered Transition Metal Sulfide for Fast Mg Storage. ECS Meeting Abstracts, 2019, MA2019-01, 353-353.	0.0	1
26	Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. Nature Communications, 2018, 9, 5115.	12.8	114
27	Toward Highly Reversible Magnesium–Sulfur Batteries with Efficient and Practical Mg[B(hfip) ₄] ₂ Electrolyte. ACS Energy Letters, 2018, 3, 2005-2013.	17.4	234
28	Preparation of hierarchical C@MoS ₂ @C sandwiched hollow spheres for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 3987-3994.	10.3	81
29	Highly tunable porous organic polymer (POP) supports for metallocene-based ethylene polymerization. Applied Surface Science, 2017, 420, 496-503.	6.1	17
30	A facile synthesis method and electrochemical studies of a hierarchical structured MoS ₂ /C-nanocomposite. RSC Advances, 2016, 6, 76084-76092.	3.6	21
31	Surface Modification of Bacterial Cellulose Aerogels' Web-like Skeleton for Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7373-7381.	8.0	366
32	Flexible aerogels with interpenetrating network structure of bacterial cellulose–silica composite from sodium silicate precursor via freeze drying process. RSC Advances, 2014, 4, 30453.	3.6	83
33	Non-Covalent Functionalization of Graphene and Multiwalled Carbon Nanotubes Composites for Transparent Conductive Films. Key Engineering Materials, 2014, 602-603, 921-925.	0.4	0
34	Morphology controlling of calcium carbonate by self-assembled surfactant micelles on PET substrate. RSC Advances, 2014, 4, 31210-31218.	3.6	7
35	Formation of uniform reduced graphene oxide films on modified PET substrates using drop-casting method. Particuology, 2014, 17, 66-73.	3.6	56
36	Flexible aerogels based on an interpenetrating network of bacterial cellulose and silica by a non-supercritical drying process. Journal of Materials Chemistry A, 2013, 1, 7963.	10.3	143

ZHENYOU LI

#	Article	IF	CITATIONS
37	Effects of Surfactants on the Synthesis of Silica Aerogels Prepared by Ambient Pressure Drying. Key Engineering Materials, 2012, 512-515, 1625-1630.	0.4	3