Yien Che Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2214526/publications.pdf

Version: 2024-02-01

331670 454955 2,589 34 21 30 citations h-index g-index papers 35 35 35 4113 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Protein expression of the gp78 E3 ligase predicts poor breast cancer outcome based on race. JCI Insight, 2022, 7, .	5.0	6
2	A structurally conserved site in AUP1 binds the E2 enzyme UBE2G2 and is essential for ER-associated degradation. PLoS Biology, 2021, 19, e3001474.	5.6	9
3	Melanoblast transcriptome analysis reveals pathways promoting melanoma metastasis. Nature Communications, 2020, $11,333$.	12.8	65
4	Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Pharmacological Reviews, 2020, 72, 380-413.	16.0	42
5	Stabilization of p27 ^{Kip1} /CDKN1B by UBCH7/UBE2L3 catalyzed ubiquitinylation: a new paradigm in cellâ€eycle control. FASEB Journal, 2019, 33, 1235-1247.	0.5	17
6	Discovering Targets of Non-enzymatic Acylation by Thioester Reactivity Profiling. Cell Chemical Biology, 2017, 24, 231-242.	5.2	79
7	Deubiquitinating enzyme VCIP135 dictates the duration of botulinum neurotoxin type A intoxication. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5158-E5166.	7.1	32
8	Activation of the unfolded protein response in sarcoma cells treated with rapamycin or temsirolimus. PLoS ONE, 2017, 12, e0185089.	2.5	5
9	Insights into Ubiquitination from the Unique Clamp-like Binding of the RING E3 AO7 to the E2 UbcH5B. Journal of Biological Chemistry, 2015, 290, 30225-30239.	3.4	25
10	Ubiquitin Ligase gp78 Targets Unglycosylated Prion Protein PrP for Ubiquitylation and Degradation. PLoS ONE, 2014, 9, e92290.	2.5	14
11	Molecular Basis for Persistence of Botulinum Neurotoxin: The Role of Intracellular Protein Degradation Pathways., 2014,, 191-205.		0
12	Differential regulation of HMG-CoA reductase and Insig-1 by enzymes of the ubiquitin-proteasome system. Molecular Biology of the Cell, 2012, 23, 4484-4494.	2.1	61
13	A Ubiquitin-Binding Rhomboid Protease Aimed at ERADication. Developmental Cell, 2012, 23, 454-456.	7.0	3
14	Stress-Induced Phosphorylation and Proteasomal Degradation of Mitofusin 2 Facilitates Mitochondrial Fragmentation and Apoptosis. Molecular Cell, 2012, 47, 547-557.	9.7	279
15	Dissecting the diverse functions of the metastasis suppressor CD82/KAI1. FEBS Letters, 2011, 585, 3166-3173.	2.8	75
16	Ubiquitylation in ERAD: Reversing to Go Forward?. PLoS Biology, 2011, 9, e1001038.	5.6	31
17	Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16554-16559.	7.1	83
18	The Unfolded Protein Response, Degradation from the Endoplasmic Reticulum, and Cancer. Genes and Cancer, 2010, 1, 764-778.	1.9	220

#	Article	IF	CITATIONS
19	Differences in the Tumor Microenvironment between African-American and European-American Breast Cancer Patients. PLoS ONE, 2009, 4, e4531.	2.5	179
20	Targeting of gp78 for ubiquitin-mediated proteasomal degradation by Hrd1: Cross-talk between E3s in the endoplasmic reticulum. Biochemical and Biophysical Research Communications, 2009, 390, 758-762.	2.1	48
21	An improved in vitro and in vivo Sindbis virus expression system through host and virus engineering. Virus Research, 2009, 141, 1-12.	2.2	12
22	Allosteric Activation of E2-RING Finger-Mediated Ubiquitylation by a Structurally Defined Specific E2-Binding Region of gp78. Molecular Cell, 2009, 34, 674-685.	9.7	144
23	Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. Seminars in Cell and Developmental Biology, 2007, 18, 770-779.	5.0	133
24	The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nature Medicine, 2007, 13, 1504-1509.	30.7	182
25	Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nature Structural and Molecular Biology, 2006, 13, 264-271.	8.2	188
26	The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 341-346.	7.1	192
27	The Rab5 Guanine Nucleotide Exchange Factor Rabex-5 Binds Ubiquitin (Ub) and Functions as a Ub Ligase through an Atypical Ub-interacting Motif and a Zinc Finger Domain. Journal of Biological Chemistry, 2006, 281, 6874-6883.	3.4	105
28	Sinusoidal Modeling of Ictal Activity Along a Thalamus-to-Cortex Seizure Pathway I: New Coherence Approaches. Annals of Biomedical Engineering, 2004, 32, 1252-1264.	2.5	12
29	Anterior Thalamic Mediation of Experimental Seizures: Selective EEG Spectral Coherence. Epilepsia, 2003, 44, 355-365.	5.1	54
30	Parkin Facilitates the Elimination of Expanded Polyglutamine Proteins and Leads to Preservation of Proteasome Function. Journal of Biological Chemistry, 2003, 278, 22044-22055.	3.4	252
31	Spectral analysis of a thalamus-to-cortex seizure pathway. IEEE Transactions on Biomedical Engineering, 1997, 44, 657-664.	4.2	34
32	Identification of seizure pathways by spectral analysis of EEG. , 0, , .		0
33	Narrowband delay estimation for thalamocortical epileptic seizure pathways. , 0, , .		7
34	A thalamus-to-cortex seizure pathway: a new coherence approach using sinusoidal modelling. , 0, , .		1