Toru Tuziuti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2214212/publications.pdf

Version: 2024-02-01

71102 106344 4,700 116 41 65 citations h-index g-index papers 117 117 117 2773 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Experimental investigation on the ultrasonic impregnation of wood through measurements of the intensity of sonoluminescence. Ultrasonics Sonochemistry, 2022, 88, 106084.	8.2	7
2	Interaction of Bulk Nanobubbles (Ultrafine Bubbles) with a Solid Surface. Langmuir, 2021, 37, 1674-1681.	3.5	10
3	Influence of bulk nanobubble concentration on the intensity of sonoluminescence. Ultrasonics Sonochemistry, 2021, 76, 105646.	8.2	5
4	Variations in the size distribution of bulk nanobubbles in response to static pressure increases. Japanese Journal of Applied Physics, 2020, 59, SKKD03.	1.5	12
5	The influence of storage conditions and container materials on the long term stability of bulk nanobubbles — Consideration from a perspective of interactions between bubbles and surroundings. Chemical Engineering Science, 2020, 219, 115594.	3.8	25
6	Mechanism of OH radical production from ozone bubbles in water after stopping cavitation. Ultrasonics Sonochemistry, 2019, 58, 104707.	8.2	31
7	High temperature and pressure inside a dissolving oxygen nanobubble. Ultrasonics Sonochemistry, 2019, 55, 308-312.	8.2	32
8	Is surface tension reduced by nanobubbles (ultrafine bubbles) generated by cavitation?. Ultrasonics Sonochemistry, 2019, 52, 13-18.	8.2	31
9	Influence of addition of degassed water on bulk nanobubbles. Ultrasonics Sonochemistry, 2018, 43, 272-274.	8.2	38
10	Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation. Ultrasonics Sonochemistry, 2018, 48, 259-266.	8.2	142
11	Influence of increase in static pressure on bulk nanobubbles. Ultrasonics Sonochemistry, 2017, 38, 347-350.	8.2	37
12	Extreme conditions in a dissolving air nanobubble. Physical Review E, 2016, 94, 013106.	2.1	57
13	Dynamic Equilibrium Model for a Bulk Nanobubble and a Microbubble Partly Covered with Hydrophobic Material. Langmuir, 2016, 32, 11101-11110.	3.5	111
14	Influence of sonication conditions on the efficiency of ultrasonic cleaning with flowing micrometer-sized air bubbles. Ultrasonics Sonochemistry, 2016, 29, 604-611.	8.2	25
15	Advanced dynamic-equilibrium model for a nanobubble and a micropancake on a hydrophobic or hydrophilic surface. Physical Review E, 2015, 91, 033008.	2.1	41
16	Measurement of the change in the number of ultrafine bubbles through pressurization. Proceedings of SPIE, 2014 , , .	0.8	9
17	Measurement of speed of sound in poly(lactic acid)-clay composite. Ultrasonics, 2014, 54, 1010-1014.	3.9	2
18	Influence of Degree of Gas Saturation on Sonochemiluminescence Intensity Resulting from Microfluidic Reactions. Journal of Physical Chemistry A, 2013, 117, 10598-10603.	2.5	4

#	Article	IF	CITATIONS
19	Intermittent Changes in the Number of Pulsating Bubbles under Ultrasound. Japanese Journal of Applied Physics, 2012, 51, 028007.	1.5	2
20	Generation and aggregation of BaTiO[sub 3] nanoparticles under ultrasound., 2012,,.		0
21	On the two-dimensional patterning of inorganic particles in resin using ultrasound. , 2012, , .		О
22	Sonoluminescence and sonochemiluminescence from a microreactor. Ultrasonics Sonochemistry, 2012, 19, 1252-1259.	8.2	53
23	Mist Separation and Sonochemiluminescence under Pulsed Ultrasound. Journal of Physical Chemistry A, 2012, 116, 3593-3597.	2.5	0
24	Ultrasonic cavitation induced water in vegetable oil emulsion droplets – A simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization. Ultrasonics Sonochemistry, 2012, 19, 652-658.	8.2	34
25	Intermittent Changes in the Number of Pulsating Bubbles under Ultrasound. Japanese Journal of Applied Physics, 2012, 51, 028007.	1.5	0
26	Influence of Degree of Gas Saturation on Multibubble Sonoluminescence Intensity. Journal of Physical Chemistry A, 2011, 115, 5089-5093.	2.5	10
27	Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. Journal of the Acoustical Society of America, 2011, 130, 3233-3242.	1.1	65
28	Fabrication of silver nanoparticles deposited on boehmite sol for surface enhanced Raman scattering. Applied Surface Science, 2011, 257, 6010-6015.	6.1	3
29	Development and optimization of acoustic bubble structures at high frequencies. Ultrasonics Sonochemistry, 2011, 18, 92-98.	8.2	65
30	Numerical simulations of sonochemical production of BaTiO3 nanoparticles. Ultrasonics Sonochemistry, 2011, 18, 1211-1217.	8.2	26
31	Manipulation of Particles in a Microchannel with Various Geometric Spaces Using Ultrasound. Japanese Journal of Applied Physics, 2011, 50, 07HE27.	1.5	17
32	Two-Dimensional Patterning of Inorganic Particles in Resin Using Ultrasound-Induced Plate Vibration. Japanese Journal of Applied Physics, 2011, 50, 088006.	1.5	5
33	Effects of Sonication Conditions on Ultrasonic Dispersion of Inorganic Particles in Acrylic Resin. Japanese Journal of Applied Physics, 2011, 50, 078004.	1.5	1
34	Manipulation of Particles in a Microchannel with Various Geometric Spaces Using Ultrasound. Japanese Journal of Applied Physics, 2011, 50, 07HE27.	1.5	5
35	Two-Dimensional Patterning of Inorganic Particles in Resin Using Ultrasound-Induced Plate Vibration. Japanese Journal of Applied Physics, 2011, 50, 088006.	1.5	3
36	Effects of Sonication Conditions on Ultrasonic Dispersion of Inorganic Particles in Acrylic Resin. Japanese Journal of Applied Physics, 2011, 50, 078004.	1.5	0

#	Article	IF	CITATIONS
37	Spatial Distribution of Acoustic Cavitation Bubbles at Different Ultrasound Frequencies. ChemPhysChem, 2010, 11, 1680-1684.	2.1	86
38	Fabrication of nanosized Pt on rutile TiO2 using a standing wave sonochemical reactor (SWSR) – observation of an enhanced catalytic oxidation of CO. Ultrasonics Sonochemistry, 2010, 17, 213-218.	8.2	18
39	Numerical simulations of acoustic cavitation noise with the temporal fluctuation in the number of bubbles. Ultrasonics Sonochemistry, 2010, 17, 460-472.	8.2	118
40	Bubble population phenomena in sonochemical reactor: II. Estimation of bubble size distribution and its number density by simple coalescence model calculation. Ultrasonics Sonochemistry, 2010, 17, 480-486.	8.2	44
41	Bubble population phenomena in sonochemical reactor: I Estimation of bubble size distribution and its number density with pulsed sonication – Laser diffraction method. Ultrasonics Sonochemistry, 2010, 17, 473-479.	8.2	55
42	Dependence of sonochemical parameters on the platinization of rutile titania – An observation of a pronounced increase in photocatalytic efficiencies. Ultrasonics Sonochemistry, 2010, 17, 621-627.	8.2	30
43	Study of an Acoustic Field in a Microchannel. Japanese Journal of Applied Physics, 2010, 49, 07HE14.	1.5	22
44	Variations in the Spatial Distribution of Sonoluminescing Bubbles in the Presence of an Ionic Surfactant and Electrolyte. Journal of Physical Chemistry B, 2010, 114, 2572-2577.	2.6	11
45	Influence of Liquid-Surface Vibration on Sonochemiluminescence Intensity. Journal of Physical Chemistry A, 2010, 114, 7321-7325.	2.5	13
46	Measurement and Numerical Calculation of Force on a Particle in a Strong Acoustic Field Required for Levitation. Japanese Journal of Applied Physics, 2009, 48, 07GM09.	1.5	24
47	Optical cavitation probe using light scattering from bubble clouds. Ultrasonics Sonochemistry, 2009, 16, 519-524.	8.2	9
48	Influence of Surface Active Solute on Ultrasonic Waveform Distortion in Liquid Containing Air Bubbles. Journal of Physical Chemistry A, 2009, 113, 8893-8900.	2.5	3
49	Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. Journal of the Acoustical Society of America, 2009, 126, 973-982.	1.1	75
50	The detection and control of stable and transient acoustic cavitation bubbles. Physical Chemistry Chemical Physics, 2009, 11, 10118.	2.8	74
51	Synthesis of europium-doped yttrium hydroxide and yttrium oxide nanosheets. Journal of Materials Science, 2008, 43, 1214-1219.	3.7	25
52	Ultrasound-induced cytolysis of cancer cells is enhanced in the presence of micron-sized alumina particles. Ultrasonics Sonochemistry, 2008, 15, 881-890.	8.2	18
53	Protein release from yeast cells as an evaluation method of physical effects in ultrasonic field. Ultrasonics Sonochemistry, 2008, 15, 995-1000.	8.2	60
54	Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science and Emerging Technologies, 2008, 9, 140-146.	5.6	241

#	Article	IF	Citations
55	Mechanism of Enhancement of Sonochemical-Reaction Efficiency by Pulsed Ultrasound. Journal of Physical Chemistry A, 2008, 112, 4875-4878.	2.5	62
56	Spatial Distribution Enhancement of Sonoluminescence Activity by Altering Sonication and Solution Conditions. Journal of Physical Chemistry B, 2008, 112, 15333-15341.	2.6	71
57	Acoustic Manipulation in Air Using a Standing Wave Field. AIP Conference Proceedings, 2008, , .	0.4	0
58	The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. Journal of Chemical Physics, 2008, 128, 184705.	3.0	158
59	The Bubble-Bubble Interaction Under An Ultrasonic Horn. AIP Conference Proceedings, 2008, , .	0.4	0
60	Acoustic Standing-Wave Field for Manipulation in Air. Japanese Journal of Applied Physics, 2008, 47, 4336.	1.5	68
61	Strongly interacting bubbles under an ultrasonic horn. Physical Review E, 2008, 77, 016609.	2.1	141
62	Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound. Journal of Chemical Physics, 2007, 127, 154502.	3.0	104
63	Noncontact Acoustic Manipulation in Air. Japanese Journal of Applied Physics, 2007, 46, 4948.	1.5	89
64	Suppression of Sonochemiluminescence Reduction at High Acoustic Amplitudes by the Addition of Particles. Journal of Physical Chemistry A, 2007, 111, 12093-12098.	2.5	25
65	Influence of Surface-Active Solutes on the Coalescence, Clustering, and Fragmentation of Acoustic Bubbles Confined in a Microspace. Journal of Physical Chemistry C, 2007, 111, 19015-19023.	3.1	42
66	Correlation between Na* Emission and "Chemically Active―Acoustic Cavitation Bubbles. ChemPhysChem, 2007, 8, 2331-2335.	2.1	59
67	FEM calculation of an acoustic field in a sonochemical reactor. Ultrasonics Sonochemistry, 2007, 14, 605-614.	8.2	77
68	Bubble motions confined in a microspace observed with stroboscopic technique. Ultrasonics Sonochemistry, 2007, 14, 621-626.	8.2	35
69	Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies. Ultrasonics Sonochemistry, 2007, 14, 699-704.	8.2	7 5
70	Ultrasound induced formation of paraffin emulsion droplets as template for the preparation of porous zirconia. Ultrasonics Sonochemistry, 2007, 14, 705-710.	8.2	13
71	Fabrication of Zinc Ferrite Nanocrystals by Sonochemical Emulsification and Evaporation:Â Observation of Magnetization and Its Relaxation at Low Temperature. Journal of Physical Chemistry B, 2006, 110, 15234-15243.	2.6	102
72	Enhancement of Sonochemical Reaction Rate by Addition of Micrometer-Sized Air Bubbles. Journal of Physical Chemistry A, 2006, 110, 10720-10724.	2.5	18

#	Article	IF	Citations
73	Ultrasonic Cavitational Activation: A Simple and Feasible Route for the Direct Conversion of Zinc Acetate to Highly Monodispersed ZnO. Chemistry Letters, 2006, 35, 60-61.	1.3	19
74	A new ultrasonic cavitation approach for the synthesis of zinc ferrite nanocrystals. Current Applied Physics, 2006, 6, 591-593.	2.4	64
75	Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry. Ultrasonics, 2006, 44, e357-e361.	3.9	26
76	Synthesis of Alumina Macroporous Materials Using Yeast Cells as Bio-Templates. Journal of the Ceramic Society of Japan, 2005, 113, 696-699.	1.3	3
77	Sonochemistry and its dosimetry. Microchemical Journal, 2005, 80, 159-164.	4.5	147
78	Spatial study on a multibubble system for sonochemistry by laser-light scattering. Ultrasonics Sonochemistry, 2005, 12, 73-77.	8.2	35
79	Dependence of the characteristics of bubbles on types of sonochemical reactors. Ultrasonics Sonochemistry, 2005, 12, 43-51.	8.2	67
80	Enhancement of sonochemical reaction by particle addition. AIP Conference Proceedings, 2005, , .	0.4	2
81	Ultrasonic Cavitation: A Solution to Nano and Biomaterials. AIP Conference Proceedings, 2005, , .	0.4	0
82	Correlation between Acoustic Cavitation Noise and Yield Enhancement of Sonochemical Reaction by Particle Addition. Journal of Physical Chemistry A, 2005, 109, 4869-4872.	2.5	190
83	Theoretical study of single-bubble sonochemistry. Journal of Chemical Physics, 2005, 122, 224706.	3.0	148
84	Effect of dual frequency on sonochemical reaction rates. Research on Chemical Intermediates, 2004, 30, 703-711.	2.7	28
85	Correlation in spatial intensity distribution between volumetric bubble oscillations and sonochemiluminescence in a multibubble system. Research on Chemical Intermediates, 2004, 30, 755-762.	2.7	14
86	Generation and consumption rates of OH radicals in sonochemical reactions. Research on Chemical Intermediates, 2004, 30, 713-721.	2.7	12
87	Optimum bubble temperature for the sonochemical production of oxidants. Ultrasonics, 2004, 42, 579-584.	3.9	69
88	Effect of particle addition on sonochemical reaction. Ultrasonics, 2004, 42, 597-601.	3.9	72
89	Sonochemically enhanced adsorption and degradation of methyl orange with activated aluminas. Ultrasonics, 2004, 42, 635-639.	3.9	56
90	Ultrasonic cavitation in microspace. Chemical Communications, 2004, , 2280.	4.1	47

#	Article	IF	Citations
91	Sonoluminescence. Applied Spectroscopy Reviews, 2004, 39, 399-436.	6.7	78
92	Laser-Light Scattering from a Multibubble System for Sonochemistry. Journal of Physical Chemistry A, 2004, 108, 9011-9013.	2.5	22
93	Preparation of nanosized TiO2 supported on activated alumina by a sonochemical method: observation of an increased photocatalytic decolourisation efficiency. Research on Chemical Intermediates, 2004, 30, 785-792.	2.7	7
94	Theoretical study of the ambient-pressure dependence of sonochemical reactions. Journal of Chemical Physics, 2003, 119, 346-356.	3.0	98
95	Effect of ambient-pressure reduction on multibubble sonochemiluminescence. Journal of Chemical Physics, 2002, 116, 6221-6227.	3.0	35
96	Simultaneous Observation of Motion and Size of a Sonoluminescing Bubble. Japanese Journal of Applied Physics, 2002, 41, 3248-3249.	1.5	20
97	Influence of dissolved oxygen content on multibubble sonoluminescence with ambient-pressure reduction. Ultrasonics, 2002, 40, 651-654.	3.9	16
98	Influence of bubble clustering on multibubble sonoluminescence. Ultrasonics, 2002, 40, 655-660.	3.9	98
99	Dependence of sonoluminescence intensity on the geometrical configuration of a reactor cell. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 28-36.	3.0	13
100	Quenching Mechanism of Multibubble Sonoluminescence at Excessive Sound Pressure. Japanese Journal of Applied Physics, 2001, 40, 3856-3860.	1.5	62
101	Micromanipulation using a focused ultrasonic standing wave field. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi Tsushin Gakkai) Tj ETQq1 1 0.7843	B bA1rgBT	/Owerlock 10
102	Observation of spatial nonuniformity in a sonochemical reaction field. AIP Conference Proceedings, 2000, , .	0.4	5
103	Observation of a Sonoluminescing Bubble Using a Stroboscope. Japanese Journal of Applied Physics, 2000, 39, 2967-2968.	1.5	19
104	Difference in Threshold between Sono- and Sonochemical Luminescence. Japanese Journal of Applied Physics, 2000, 39, 2962-2966.	1.5	54
105	Measurement of Distribution of Acoustic Radiation Force Perpendicular to Sound Beam Axis. Japanese Journal of Applied Physics, 1999, 38, 3297-3301.	1.5	16
106	Relationship between a Standing-Wave Field and a Sonoluminescing Field. Japanese Journal of Applied Physics, 1999, 38, 3053-3057.	1.5	24
107	Control of a Standing Wave Field Using a Line-Focused Transducer for Two-Dimensional Manipulation of Particles. Japanese Journal of Applied Physics, 1998, 37, 2974-2978.	1.5	48
108	Influence of the Sound Field on the Intensity of Sonoluminescence. Japanese Journal of Applied Physics, 1998, 37, 2832-2835.	1.5	7

Toru Tuziuti

#	Article	IF	CITATIONS
109	Measurement of the establishment process of acoustic streaming using laser Doppler velocimetry. Ultrasonics, 1996, 34, 527-530.	3.9	12
110	Effects of Nonlinearity in Development of Acoustic Streaming. Japanese Journal of Applied Physics, 1995, 34, 2584-2589.	1.5	30
111	Acoustic manipulation of micro objects using an ultrasonic standing wave. , 0, , .		8
112	Acoustic micromanipulation using a multi-electrode transducer. , 0, , .		16
113	Non-contact micromanipulation using an ultrasonic standing wave field., 0,,.		14
114	Two-dimensional acoustic micromanipulation using a line-focused transducer., 0,,.		5
115	Two-dimensional acoustic micromanipulation using three ultrasonic transducers. , 0, , .		4
116	Three-dimensional acoustic micromanipulation using four ultrasonic transducers. , 0, , .		7