
Stephen C Mack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2212765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of MAT2A compromises methionine metabolism and represents a vulnerability in H3K27M mutant glioma by modulating the epigenome. Nature Cancer, 2022, 3, 629-648.	13.2	16
2	Leveraging epigenomic patterns to resolve the heterogeneity and origins of CNS GCTs. Neuro-Oncology, 2022, , .	1.2	0
3	Sox9 directs divergent epigenomic states in brain tumor subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
4	ZFTA–RELA Dictates Oncogenic Transcriptional Programs to Drive Aggressive Supratentorial Ependymoma. Cancer Discovery, 2021, 11, 2200-2215.	9.4	46
5	<i>ZFTA</i> Translocations Constitute Ependymoma Chromatin Remodeling and Transcription Factors. Cancer Discovery, 2021, 11, 2216-2229.	9.4	32
6	Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas. Cancer Discovery, 2021, 11, 2230-2247.	9.4	39
7	Maternal and perinatal factors are associated with risk of pediatric central nervous system tumors and poorer survival after diagnosis. Scientific Reports, 2021, 11, 10410.	3.3	6
8	Durable Response to Larotrectinib in a Child With Histologic Diagnosis of Recurrent Disseminated Ependymoma Discovered to Harbor an <i>NTRK2</i> Fusion: The Impact of Integrated Genomic Profiling. JCO Precision Oncology, 2021, 5, 1221-1227.	3.0	5
9	Sub-group, Sub-type, and Cell-type Heterogeneity of Ependymoma. Cancer Cell, 2020, 38, 15-17.	16.8	2
10	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	28.9	93
11	The Meningioma Enhancer Landscape Delineates Novel Subgroups and Drives Druggable Dependencies. Cancer Discovery, 2020, 10, 1722-1741.	9.4	30
12	Weighing ependymoma as an epigenetic disease. Journal of Neuro-Oncology, 2020, 150, 57-61.	2.9	3
13	H3.3 G34W Promotes Growth and Impedes Differentiation of Osteoblast-Like Mesenchymal Progenitors in Giant Cell Tumor of Bone. Cancer Discovery, 2020, 10, 1968-1987.	9.4	40
14	Invited Review: The role and contribution of transcriptional enhancers in brain cancer. Neuropathology and Applied Neurobiology, 2020, 46, 48-56.	3.2	3
15	Zika Virus Targets Glioblastoma Stem Cells through a SOX2-Integrin αvβ5 Axis. Cell Stem Cell, 2020, 26, 187-204.e10.	11.1	126
16	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	30.7	141
17	Targeting NAD+ Biosynthesis Overcomes Panobinostat and Bortezomib-Induced Malignant Glioma Resistance. Molecular Cancer Research, 2020, 18, 1004-1017.	3.4	10
18	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	28.9	79

#	Article	IF	CITATIONS
19	Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Science Translational Medicine, 2019, 11, .	12.4	112
20	A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell, 2019, 36, 51-67.e7.	16.8	69
21	Targeting Glioblastoma Stem Cells through Disruption of the Circadian Clock. Cancer Discovery, 2019, 9, 1556-1573.	9.4	172
22	Glioma Stem Cell–Specific Superenhancer Promotes Polyunsaturated Fatty-Acid Synthesis to Support EGFR Signaling. Cancer Discovery, 2019, 9, 1248-1267.	9.4	120
23	Pervasive H3K27 Acetylation Leads to ERV Expression and a Therapeutic Vulnerability in H3K27M Gliomas. Cancer Cell, 2019, 35, 782-797.e8.	16.8	143
24	Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature, 2019, 572, 67-73.	27.8	293
25	Chromatin landscapes reveal developmentally encoded transcriptional states that define human glioblastoma. Journal of Experimental Medicine, 2019, 216, 1071-1090.	8.5	89
26	Functional Enhancers Shape Extrachromosomal Oncogene Amplifications. Cell, 2019, 179, 1330-1341.e13.	28.9	206
27	Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. Cell Stem Cell, 2018, 22, 514-528.e5.	11.1	185
28	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	27.8	170
29	Interrogating the enhancer landscape of intracranial ependymomas: perspectives for precision medicine. Expert Review of Precision Medicine and Drug Development, 2018, 3, 147-149.	0.7	1
30	Impact of radiation therapy and extent of resection for ependymoma in young children: A populationâ€based study. Pediatric Blood and Cancer, 2018, 65, e26880.	1.5	20
31	Pediatric ependymoma: current treatment and newer therapeutic insights. Future Oncology, 2018, 14, 3175-3186.	2.4	12
32	A functional genomics approach to identify pathways of drug resistance in medulloblastoma. Acta Neuropathologica Communications, 2018, 6, 146.	5.2	10
33	N-methyladenine DNA Modification in Glioblastoma. Cell, 2018, 175, 1228-1243.e20.	28.9	236
34	Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathologica, 2018, 136, 227-237.	7.7	86
35	AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells. Cell Stem Cell, 2018, 23, 86-100.e6.	11.1	189
36	Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathologica, 2018, 136, 211-226.	7.7	199

#	Article	IF	CITATIONS
37	Childhood Medulloblastoma: Current Therapies, Emerging Molecular Landscape and Newer Therapeutic Insights. Current Neuropharmacology, 2018, 16, 1045-1058.	2.9	39
38	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	21.4	112
39	H3 K27M mutations are extremely rare in posterior fossa group A ependymoma. Child's Nervous System, 2017, 33, 1047-1051.	1.1	46
40	Purine synthesis promotes maintenance of brain tumor initiating cells in glioma. Nature Neuroscience, 2017, 20, 661-673.	14.8	153
41	Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. Journal of Experimental Medicine, 2017, 214, 245-267.	8.5	123
42	Targeting glioma stem cells through combined BMI1 and EZH2 inhibition. Nature Medicine, 2017, 23, 1352-1361.	30.7	279
43	Put away your microscopes: the ependymoma molecular era has begun. Current Opinion in Oncology, 2017, 29, 443-447.	2.4	21
44	Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome. Nature Communications, 2017, 8, 14400.	12.8	93
45	MYC-Regulated Mevalonate Metabolism Maintains Brain Tumor–Initiating Cells. Cancer Research, 2017, 77, 4947-4960.	0.9	91
46	Transcription elongation factors represent in vivo cancer dependencies in glioblastoma. Nature, 2017, 547, 355-359.	27.8	156
47	Transposase-driven rearrangements in human tumors. Nature Genetics, 2017, 49, 975-977.	21.4	1
48	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathologica, 2017, 133, 5-12.	7.7	271
49	Genomic Analysis of Childhood Brain Tumors: Methods for Genome-Wide Discovery and Precision Medicine Become Mainstream. Journal of Clinical Oncology, 2017, 35, 2346-2354.	1.6	25
50	Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight, 2017, 2, .	5.0	93
51	Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. Journal of Clinical Oncology, 2016, 34, 2468-2477.	1.6	160
52	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266
53	A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found <i>In Vivo</i> . Cancer Research, 2016, 76, 2465-2477.	0.9	453
54	An epigenetic gateway to brain tumor cell identity. Nature Neuroscience, 2016, 19, 10-19.	14.8	76

#	Article	IF	CITATIONS
55	RBPJ maintains brain tumor–initiating cells through CDK9-mediated transcriptional elongation. Journal of Clinical Investigation, 2016, 126, 2757-2772.	8.2	52
56	Cancer stem cells in glioblastoma. Genes and Development, 2015, 29, 1203-1217.	5.9	1,248
57	"PEAR-ing―Genomic and Epigenomic Analyses for Cancer Gene Discovery. Cancer Discovery, 2015, 5, 1018-1020.	9.4	1
58	Spinal Myxopapillary Ependymomas Demonstrate a Warburg Phenotype. Clinical Cancer Research, 2015, 21, 3750-3758.	7.0	40
59	Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell, 2015, 28, 441-455.	16.8	249
60	MLL5 Orchestrates a Cancer Self-Renewal State by Repressing the Histone Variant H3.3 and Globally Reorganizing Chromatin. Cancer Cell, 2015, 28, 715-729.	16.8	90
61	Foretinib Is Effective Therapy for Metastatic Sonic Hedgehog Medulloblastoma. Cancer Research, 2015, 75, 134-146.	0.9	51
62	Basic Science of Pediatric Brain Tumors. , 2015, , 59-67.		1
63	CDC20 maintains tumor initiating cells. Oncotarget, 2015, 6, 13241-13254.	1.8	53
64	Identification of alsterpaullone as a novel small molecule inhibitor to target group 3 medulloblastoma. Oncotarget, 2015, 6, 21718-21729.	1.8	26
65	Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells. Acta Neuropathologica, 2014, 128, 863-877.	7.7	34
66	Gene-expression profiling elucidates molecular signaling networks that can be therapeutically targeted in vestibular schwannoma. Journal of Neurosurgery, 2014, 121, 1434-1445.	1.6	35
67	Evasion of p53 and G2/M checkpoints are characteristic of Hh-driven basal cell carcinoma. Oncogene, 2014, 33, 2674-2680.	5.9	19
68	Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 2014, 506, 445-450.	27.8	521
69	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	1.6	263
70	Response. Journal of Neurosurgery, 2014, 121, 1433.	1.6	0
71	FoxG1 Interacts with Bmi1 to Regulate Self-Renewal and Tumorigenicity of Medulloblastoma Stem Cells, 2013, 31, 1266-1277.	3.2	53
72	Emerging Insights into the Ependymoma Epigenome. Brain Pathology, 2013, 23, 206-209.	4.1	21

#	Article	IF	CITATIONS
73	Hypermutation of the Inactive X Chromosome Is a Frequent Event in Cancer. Cell, 2013, 155, 567-581.	28.9	67
74	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	7.7	146
75	Intertumoral and Intratumoral Heterogeneity as a Barrier for Effective Treatment of Medulloblastoma. Neurosurgery, 2013, 60, 57-63.	1.1	13
76	Nestin Expression Identifies Ependymoma Patients with Poor Outcome. Brain Pathology, 2012, 22, 848-860.	4.1	40
77	Delineation of Two Clinically and Molecularly Distinct Subgroups of Posterior Fossa Ependymoma. Cancer Cell, 2011, 20, 143-157.	16.8	494
78	PCDH10 is a candidate tumour suppressor gene in medulloblastoma. Child's Nervous System, 2011, 27, 1243-1249.	1.1	21
79	Molecular genetics of ependymoma. Chinese Journal of Cancer, 2011, 30, 669-681.	4.9	37
80	Cross-species genomics matches driver mutations and cell compartments to model ependymoma. Nature, 2010, 466, 632-636.	27.8	324
81	The genetic and epigenetic basis of ependymoma. Child's Nervous System, 2009, 25, 1195-1201.	1.1	73