Shanshan Pei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2212191/publications.pdf Version: 2024-02-01

Shanshan Dei

#	Article	IF	CITATIONS
1	The STAT3-MYC axis promotes survival of leukemia stem cells by regulating SLC1A5 and oxidative phosphorylation. Blood, 2022, 139, 584-596.	1.4	51
2	The Hepatic Microenvironment Uniquely Protects Leukemia Cells through Induction of Growth and Survival Pathways Mediated by LIPG. Cancer Discovery, 2021, 11, 500-519.	9.4	13
3	The Intriguing Clinical Success of BCL-2 Inhibition in Acute Myeloid Leukemia. Annual Review of Cancer Biology, 2021, 5, 277-289.	4.5	3
4	Venetoclax and azacitidine compared with induction chemotherapy for newly diagnosed patients with acute myeloid leukemia. Blood Advances, 2021, 5, 5565-5573.	5.2	91
5	Lysosomal Acid Lipase a (LIPA) Modulates Leukemia Stem Cell (LSC) Response to Venetoclax/TKI Combination Therapy in Blast Phase Chronic Myeloid Leukemia. Blood, 2021, 138, 630-630.	1.4	0
6	Nicotinamide Metabolism Mediates Resistance to Venetoclax in Relapsed Acute Myeloid Leukemia Stem Cells. Cell Stem Cell, 2020, 27, 748-764.e4.	11.1	130
7	Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells. Nature Cancer, 2020, 1, 1176-1187.	13.2	137
8	Monocytic Subclones Confer Resistance to Venetoclax-Based Therapy in Patients with Acute Myeloid Leukemia. Cancer Discovery, 2020, 10, 536-551.	9.4	252
9	Cysteine depletion targets leukemia stem cells through inhibition of electron transport complex II. Blood, 2019, 134, 389-394.	1.4	108
10	Low ferroportin expression in AML is correlated with good risk cytogenetics, improved outcomes and increased sensitivity to chemotherapy. Leukemia Research, 2019, 80, 1-10.	0.8	18
11	The Hematopoietic Oxidase NOX2 Regulates Self-Renewal of Leukemic Stem Cells. Cell Reports, 2019, 27, 238-254.e6.	6.4	65
12	Inhibition of Amino Acid Metabolism Selectively Targets Human Leukemia Stem Cells. Cancer Cell, 2018, 34, 724-740.e4.	16.8	390
13	Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nature Medicine, 2018, 24, 1859-1866.	30.7	496
14	Cladribine in combination with entinostat synergistically elicits anti-proliferative/anti-survival effects on multiple myeloma cells. Cell Cycle, 2018, 17, 985-996.	2.6	15
15	AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells. Cell Stem Cell, 2018, 23, 86-100.e6.	11.1	189
16	Targeted therapy for a subset of acute myeloid leukemias that lack expression of aldehyde dehydrogenase 1A1. Haematologica, 2017, 102, 1054-1065.	3.5	16
17	Leukemic Stem Cells Evade Chemotherapy by Metabolic Adaptation to an Adipose Tissue Niche. Cell Stem Cell, 2016, 19, 23-37.	11.1	397
18	Rational Design of a Parthenolide-based Drug Regimen That Selectively Eradicates Acute Myelogenous Leukemia Stem Cells. Journal of Biological Chemistry, 2016, 291, 21984-22000.	3.4	30

Shanshan Pei

#	Article	IF	CITATIONS
19	SomVarIUS: somatic variant identification from unpaired tissue samples. Bioinformatics, 2016, 32, 808-813.	4.1	44
20	Mitochondrial Fission 1 Regulates GSK3 and AMPK Signaling to Sustain Leukemia Stem Cell Function in Acute Myelogenous Leukemia. Blood, 2016, 128, 1703-1703.	1.4	1
21	The Role of NADPH Oxidase 2 in Normal and Malignant Hematopoiesis. Blood, 2016, 128, 1079-1079.	1.4	0
22	Cellular Iron Status Is Associated with Better Survival and Increased Chemotherapy Sensitivity in AML. Blood, 2015, 126, 4975-4975.	1.4	2
23	Regulation of Mitochondrial Morphology Is Important for Leukemia Stem Cell Function. Blood, 2015, 126, 842-842.	1.4	7
24	Requirement for CRIF1 in RNA interference and Dicer-2 stability. RNA Biology, 2014, 11, 1171-1179.	3.1	6
25	The sonic hedgehog factor GLI1 imparts drug resistance through inducible glucuronidation. Nature, 2014, 511, 90-93.	27.8	168
26	BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Cell Stem Cell, 2013, 12, 329-341.	11.1	1,004
27	Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells. Journal of Biological Chemistry, 2013, 288, 33542-33558.	3.4	163
28	How close are we to targeting the leukemia stem cell?. Best Practice and Research in Clinical Haematology, 2012, 25, 415-418.	1.7	14
29	Bcl-2 Inhibitor ABT-263 Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Blood, 2012, 120, 206-206.	1.4	3
30	Melampomagnolide B: A new antileukemic sesquiterpene. Bioorganic and Medicinal Chemistry, 2011, 19, 1515-1519.	3.0	50