Alexei V Tulin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2211799/publications.pdf

Version: 2024-02-01

34 1,998 21 33 g-index

34 34 34 34 1991

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Chromatin Loosening by Poly(ADP)-Ribose Polymerase (PARP) at Drosophila Puff Loci. Science, 2003, 299, 560-562.	12.6	426
2	Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA. Genes and Development, 2009, 23, 804-809.	5.9	190
3	The <i>Drosophila</i> heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes and Development, 2002, 16, 2108-2119.	5.9	187
4	The roles of PARP1 in gene control and cell differentiation. Current Opinion in Genetics and Development, 2010, 20, 512-518.	3.3	126
5	Nucleosomal Core Histones Mediate Dynamic Regulation of Poly(ADP-ribose) Polymerase 1 Protein Binding to Chromatin and Induction of Its Enzymatic Activity. Journal of Biological Chemistry, 2007, 282, 32511-32519.	3.4	96
6	Poly(ADP-Ribose) Polymerase 1 (PARP-1) Regulates Ribosomal Biogenesis in Drosophila Nucleoli. PLoS Genetics, 2012, 8, e1002442.	3.5	85
7	Poly(ADP-ribosyl)ation of heterogeneous nuclear ribonucleoproteins modulates splicing. Nucleic Acids Research, 2009, 37, 3501-3513.	14.5	84
8	Poly (ADP-Ribose) Polymerase 1 Is Required for Protein Localization to Cajal Body. PLoS Genetics, 2009, 5, e1000387.	3.5	71
9	Poly-ADP-ribose polymerase: Machinery for nuclear processes. Molecular Aspects of Medicine, 2013, 34, 1124-1137.	6.4	71
10	Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9941-9946.	7.1	63
11	<i>Drosophila</i> histone H2A variant (H2Av) controls poly(ADP-ribose) polymerase 1 (PARP1) activation in chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6205-6210.	7.1	61
12	Post-Transcriptional Regulation by Poly(ADP-ribosyl)ation of the RNA-Binding Proteins. International Journal of Molecular Sciences, 2013, 14, 16168-16183.	4.1	56
13	Bookmarking promoters in mitotic chromatin: poly(ADP-ribose)polymerase-1 as an epigenetic mark. Nucleic Acids Research, 2014, 42, 7028-7038.	14.5	56
14	Uncoupling of the transactivation and transrepression functions of PARP1 protein. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6406-6411.	7.1	54
15	Regulation of Chromatin Structure and Gene Activity by Poly(ADP-Ribose) Polymerases. Current Topics in Developmental Biology, 2003, 56, 55-83.	2.2	53
16	Drosophila Poly(ADP-Ribose) Glycohydrolase Mediates Chromatin Structure and SIR2-Dependent Silencing. Genetics, 2006, 172, 363-371.	2.9	53
17	Poly(ADP-ribose) controls DE-cadherin-dependent stem cell maintenance and oocyte localization. Nature Communications, 2012, 3, 760.	12.8	48
18	Kinase-Mediated Changes in Nucleosome Conformation Trigger Chromatin Decondensation via Poly(ADP-Ribosyl)ation. Molecular Cell, 2014, 53, 831-842.	9.7	39

#	Article	IF	CITATIONS
19	Non-NAD-Like poly(ADP-Ribose) Polymerase-1 Inhibitors effectively Eliminate Cancer in vivo. EBioMedicine, 2016, 13, 90-98.	6.1	38
20	Minor grove binding ligands disrupt PARP-1 activation pathways. Oncotarget, 2014, 5, 428-437.	1.8	22
21	Non-NAD-like PARP-1 inhibitors in prostate cancer treatment. Biochemical Pharmacology, 2019, 167, 149-162.	4.4	21
22	Re-evaluating PARP1 inhibitor in cancer. Nature Biotechnology, 2011, 29, 1078-1079.	17.5	18
23	Small-Molecule Collection and High-Throughput Colorimetric Assay to Identify PARP1 Inhibitors. Methods in Molecular Biology, 2011, 780, 491-516.	0.9	13
24	Non-NAD-like PARP1 inhibitor enhanced synthetic lethal effect of NAD-like PARP inhibitors against BRCA1-deficient leukemia. Leukemia and Lymphoma, 2019, 60, 1098-1101.	1.3	12
25	Poly(ADP-Ribosyl)ation of hnRNP A1 Protein Controls Translational Repression in <i>Drosophila</i> Molecular and Cellular Biology, 2016, 36, 2476-2486.	2.3	10
26	Poly(ADP)-Ribosylation Inhibition: A Promising Approach for Clear Cell Renal Cell Carcinoma Therapy. Cancers, 2021, 13, 4973.	3.7	10
27	Poly(ADP-ribose) polymerase 1 in genome-wide expression control in Drosophila. Scientific Reports, 2020, 10, 21151.	3.3	9
28	Age-Related Changes of Gene Expression Profiles in Drosophila. Genes, 2021, 12, 1982.	2.4	8
29	Poly(ADP-ribosyl)ating pathway regulates development from stem cell niche to longevity control. Life Science Alliance, 2022, 5, e202101071.	2.8	5
30	Novel allosteric PARP1 inhibitors for the treatment of BRCA-deficient leukemia. Medicinal Chemistry Research, 2020, 29, 962-978.	2.4	4
31	PARG suppresses tumorigenesis and downregulates genes controlling angiogenesis, inflammatory response, and immune cell recruitment. BMC Cancer, 2022, 22, 557.	2.6	4
32	High-Throughput Colorimetric Assay for Identifying PARP-1 Inhibitors Using a Large Small-Molecule Collection. Methods in Molecular Biology, 2017, 1608, 299-312.	0.9	3
33	Structurally unique PARP†inhibitors for the treatment of prostate cancer. Pharmacology Research and Perspectives, 2020, 8, e00586.	2.4	2
34	PARP-1 Interaction with and Activation by Histones and Nucleosomes. Methods in Molecular Biology, 2017, 1608, 255-267.	0.9	0